距離空間ならば第1可算公理を満たす
距離空間ならば第1可算公理を満たす
距離空間\(\left(X,d\right)\)ならば第1可算公理を満たす。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)ならば第1可算公理を満たす。
逆は一般的に成り立たない。
\(\Rightarrow\)
任意の\(x\in X\)に対し、\(x\)での基本近傍系\(\mathcal{B}_{x}\)を\(\mathcal{B}_{x}=\left\{ B\left(x,\frac{1}{n}\right);n\in\mathbb{N}\right\} \)とおけば\(\mathcal{B}_{x}\)は高々可算濃度なので第1可算公理を満たす。故に\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)は一般的に成り立たない
反例で示す。上限位相\(\left(\mathbb{R},\mathcal{O}_{u}\right)\)は基本近傍系\(\mathcal{B}_{x}\)を\(\mathcal{B}_{x}=\left\{ \left(x-\frac{1}{n},x\right];n\in\mathbb{N}\right\} \)とすれば\(\mathcal{B}_{x}\)は高々可算濃度なので第1可算公理を満たすが、距離化不可能である。
故に\(\Leftarrow\)は一般的に成り立たない。
ページ情報
タイトル | 距離空間ならば第1可算公理を満たす |
URL | https://www.nomuramath.com/od3mdqpb/ |
SNSボタン |
一様連続であれば各点連続
一様連続であれば各点連続である。
距離空間ならばハウスドルフ空間
距離空間$\left(X,d\right)$ならばハウスドルフ空間となる。
単射により誘導された距離空間
\[
d_{f}\left(a,b\right)=d\left(f\left(a\right),f\left(b\right)\right)
\]
離散距離は距離空間
\[
d_{\delta}\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
0 & \boldsymbol{x}=\boldsymbol{y}\\
1 & \boldsymbol{x}\ne\boldsymbol{y}
\end{cases}
\]