xDの冪乗の性質

xDの冪乗の性質
\(xD=x\frac{d}{dx}\)の冪乗について次が成り立つ。
\(n\in\mathbb{N}_{0}\)とする。

(1)

\begin{align*} \left(x\frac{d}{dx}\right)^{n}e^{x} & =\sum_{k=0}^{\infty}\frac{k^{n}}{k!}x^{k}\\ & =e^{x}\sum_{k=0}^{\infty}S_{2}\left(n,k\right)x^{k} \end{align*}

(2)

\[ \left(x\frac{d}{dx}\right)^{n}x^{k}=k^{n}x^{k} \]

-

\(S_{2}\left(n,k\right)\)は第2種スターリング数

(1)

\begin{align*} \sum_{k=0}^{\infty}\frac{k^{n}}{k!}x^{k} & =\left(x\frac{d}{dx}\right)^{n}\sum_{k=0}^{\infty}\frac{1}{k!}x^{k}\\ & =\left(x\frac{d}{dx}\right)^{n}e^{x}\tag{(*)}\\ & =\sum_{k=0}^{\infty}S_{2}\left(n,k\right)x^{k}\left(\frac{d}{dx}\right)^{k}e^{x}\cmt{\because\left(x\frac{d}{dx}\right)^{n}=\sum_{k=0}^{\infty}S_{2}\left(n,k\right)x^{k}\left(\frac{d}{dx}\right)^{k}}\\ & =e^{x}\sum_{k=0}^{\infty}S_{2}\left(n,k\right)x^{k} \end{align*}

(2)

\begin{align*} \left(x\frac{d}{dx}\right)^{n}x^{k} & =\left(x\frac{d}{dx}\right)^{n-1}\left(x\frac{d}{dx}\right)x^{k}\\ & =k\left(x\frac{d}{dx}\right)^{n-1}x^{k}\\ & =k^{n}x^{k}+k^{n}\sum_{j=1}^{n}\left(\frac{1}{k^{j}}\left(x\frac{d}{dx}\right)^{j}-\frac{1}{k^{j-1}}\left(x\frac{d}{dx}\right)^{j-1}\right)x^{k}\\ & =k^{n}x^{k} \end{align*}

(2)-2

\begin{align*} \left(x\frac{d}{dx}\right)^{n}x^{k} & =\sum_{j=0}^{\infty}S_{2}\left(n,j\right)x^{j}\left(\frac{d}{dx}\right)^{j}x^{k}\\ & =\sum_{j=0}^{\infty}S_{2}\left(n,j\right)x^{j}P\left(k,j\right)x^{k-j}\cmt{\because\left(x\frac{d}{dx}\right)^{n}=\sum_{k=0}^{\infty}S_{2}\left(n,k\right)x^{k}\left(\frac{d}{dx}\right)^{k}}\\ & =x^{k}\sum_{j=0}^{\infty}S_{2}\left(n,j\right)P\left(k,j\right)\\ & =x^{k}k^{n} \end{align*}
スポンサー募集!

ページ情報
タイトル
xDの冪乗の性質
URL
https://www.nomuramath.com/o0ul1vok/
SNSボタン