ガンマ関数の微分
ガンマ関数の微分は以下の通りになる。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\begin{align*}
\frac{d}{dz}\Gamma(z) & =\Gamma(z)\frac{d}{dz}\log\left(\Gamma(z)\right)\\
& =\Gamma(z)\psi(z)
\end{align*}
ページ情報
タイトル | ガンマ関数の微分 |
URL | https://www.nomuramath.com/ntcr6sqv/ |
SNSボタン |
偶数と奇数の2重階乗
\[
\left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)}
\]
ガンマ関数のルジャンドル倍数公式
\[
\Gamma(2z)=\frac{2^{2z-1}}{\sqrt{\pi}}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right)
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
不完全ガンマ関数とガンマ関数との関係
\[
\gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right)
\]