3角形の垂心と円に内接する4角形
3角形の垂心と円に内接する4角形
3角形\(ABC\)があり垂心を\(H\)として直線\(AH\)と直線\(BC\)の交点を\(P\)、直線\(BH\)と直線\(CA\)の交点を\(Q\)、直線\(CH\)と直線\(AB\)の交点を\(R\)とする。
このとき4角形\(ARHQ,BPHR,CQHP\)は円に内接する。

3角形\(ABC\)があり垂心を\(H\)として直線\(AH\)と直線\(BC\)の交点を\(P\)、直線\(BH\)と直線\(CA\)の交点を\(Q\)、直線\(CH\)と直線\(AB\)の交点を\(R\)とする。
このとき4角形\(ARHQ,BPHR,CQHP\)は円に内接する。
\(\angle ARH=\angle HQA=90^{\circ}\)で\(\angle ARH+\angle HQA=180^{\circ}\)なので4角形\(ARHQ\)は円に内接する。
4角形\(BPHR,CQHP\)も同様である。
4角形\(BPHR,CQHP\)も同様である。
ページ情報
タイトル | 3角形の垂心と円に内接する4角形 |
URL | https://www.nomuramath.com/nh6bw354/ |
SNSボタン |
ヘロンの公式
\[
S=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}
\]
3点を通る円
\[
\det\left(\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1\\
x_{1}^{2}+y_{1}^{2} & x_{1} & y_{1} & 1\\
x_{2}^{2}+y_{2}^{2} & x_{2} & y_{2} & 1\\
x_{3}^{2}+y_{3}^{2} & x_{3} & y_{3} & 1
\end{array}\right)=0
\]
正弦定理
\[
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R
\]
トレミーの定理
\[
\left|\overrightarrow{AB}\right|\left|\overrightarrow{CD}\right|+\left|\overrightarrow{BC}\right|\left|\overrightarrow{DA}\right|=\left|\overrightarrow{BD}\right|\left|\overrightarrow{CA}\right|
\]