順序対の定義
順序対の定義
\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\)となるのは、\(a_{1}=a_{2}\land b_{1}=b_{2}\)となるときのみ、すなわち\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\Leftrightarrow a_{1}=a_{2}\land b_{1}=b_{2}\)である。
3つの順序対は\(\left(a,b,c\right)=\left(a,\left(b,c\right)\right)\)や\(\left(a,b,c\right)=\left(\left(a,b\right),c\right)\)とすればいい。
\(\left(a,b\right):=\left\{ \left\{ a,1\right\} ,\left\{ b,2\right\} \right\} \)とする。
クラトフスキーの定義
\(\left(a,b\right):=\left\{ \left\{ a\right\} ,\left\{ a,b\right\} \right\} \)とする。
このとき、\(\left(a,a\right)=\left\{ \left\{ a\right\} ,\left\{ a,a\right\} \right\} =\left\{ \left\{ a\right\} ,\left\{ a\right\} \right\} =\left\{ \left\{ a\right\} \right\} \)となる。
(1)順序対
2つの対象\(a,b\)を順番も考慮し組にしたものを順序対といい、\(a,b\)の順に指定するなら\(\left(a,b\right)\)と表記する。\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\)となるのは、\(a_{1}=a_{2}\land b_{1}=b_{2}\)となるときのみ、すなわち\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\Leftrightarrow a_{1}=a_{2}\land b_{1}=b_{2}\)である。
3つの順序対は\(\left(a,b,c\right)=\left(a,\left(b,c\right)\right)\)や\(\left(a,b,c\right)=\left(\left(a,b\right),c\right)\)とすればいい。
(2)順序対の定義
ハウスドルフの定義\(\left(a,b\right):=\left\{ \left\{ a,1\right\} ,\left\{ b,2\right\} \right\} \)とする。
クラトフスキーの定義
\(\left(a,b\right):=\left\{ \left\{ a\right\} ,\left\{ a,b\right\} \right\} \)とする。
このとき、\(\left(a,a\right)=\left\{ \left\{ a\right\} ,\left\{ a,a\right\} \right\} =\left\{ \left\{ a\right\} ,\left\{ a\right\} \right\} =\left\{ \left\{ a\right\} \right\} \)となる。
ページ情報
| タイトル | 順序対の定義 | 
| URL | https://www.nomuramath.com/n3uwlg7w/ | 
| SNSボタン | 
xDの冪乗の性質
\[
\left(x\frac{d}{dx}\right)^{n}e^{x}=e^{x}\sum_{k=0}^{\infty}S_{2}\left(n,k\right)x^{k}
\]
 調和数・一般化調和数の乗法公式
\[
H_{nz,m}=\frac{n^{m-1}-1}{n^{m-1}}\zeta\left(m\right)+\frac{1}{n^{m}}\sum_{k=0}^{n-1}H_{z+\frac{k}{n},m}
\]
 ユークリッド距離は距離空間
\[
d_{2}\left(\boldsymbol{x},\boldsymbol{y}\right)=\left|\boldsymbol{x}-\boldsymbol{y}\right|
\]
 ヘヴィサイドの階段関数の問題
\[
f\left(H\left(\pm_{1}1\right)\right)g\left(-H\left(\pm_{1}1\right)\right)\pm_{2}f\left(-H\left(\mp_{1}1\right)\right)g\left(H\left(\mp_{1}1\right)\right)=\left\{ f\left(0\right)g\left(0\right)+f\left(\pm1\right)g\left(\mp1\right)\right\} H\left(\pm_{2}1\right)\mp_{1}\left\{ f\left(0\right)g\left(0\right)-f\left(\pm_{1}1\right)g\left(\mp_{1}1\right)\right\} H\left(\mp_{2}1\right)
\]
 
