一様コーシー列の定義
一様コーシー列の定義
関数列\(f_{n}(x)\)の定義域を\(I\)とする。
このとき、
\[ \forall\epsilon>0,\exists N\in\mathbb{N},\forall x\in I;\left(N\leq m,n\right)\rightarrow d\left(f_{m}\left(x\right),f_{n}\left(x\right)\right)<\epsilon \] ならば関数列\(f_{n}(x)\)を一様コーシー列という。
関数列\(f_{n}(x)\)の定義域を\(I\)とする。
このとき、
\[ \forall\epsilon>0,\exists N\in\mathbb{N},\forall x\in I;\left(N\leq m,n\right)\rightarrow d\left(f_{m}\left(x\right),f_{n}\left(x\right)\right)<\epsilon \] ならば関数列\(f_{n}(x)\)を一様コーシー列という。
\(x\in\mathbb{R}\)として\(f_{n}\left(x\right)=\frac{1}{x^{2}+n^{2}}\)とする。
このとき、任意の\(\epsilon>0\)に対し、自然数\(N\in\mathbb{N}\)を\(\frac{1}{\epsilon}\leq N\)となるようにとなる。
\(N\leq m,n\)のとき、
\begin{align*} \left|f_{m}\left(x\right)-f_{n}\left(x\right)\right| & =\left|\frac{1}{x^{2}+m^{2}}-\frac{1}{x^{2}+n^{2}}\right|\\ & =\left|\frac{1}{x^{2}+m^{2}}+\left(-\frac{1}{x^{2}+n^{2}}\right)\right|\\ & =\frac{1}{x^{2}+m^{2}}+\frac{1}{x^{2}+n^{2}}\\ & =\frac{1}{m^{2}}+\frac{1}{n^{2}}\\ & \leq\frac{1}{N^{2}}+\frac{1}{N^{2}}\\ & =\frac{2}{N^{2}}\\ & \leq\frac{2}{N}\\ & \leq2\epsilon \end{align*} となるので、\(f_{n}\left(x\right)=\frac{1}{x^{2}+n^{2}}\)は一様コーシー列になる。
このとき、任意の\(\epsilon>0\)に対し、自然数\(N\in\mathbb{N}\)を\(\frac{1}{\epsilon}\leq N\)となるようにとなる。
\(N\leq m,n\)のとき、
\begin{align*} \left|f_{m}\left(x\right)-f_{n}\left(x\right)\right| & =\left|\frac{1}{x^{2}+m^{2}}-\frac{1}{x^{2}+n^{2}}\right|\\ & =\left|\frac{1}{x^{2}+m^{2}}+\left(-\frac{1}{x^{2}+n^{2}}\right)\right|\\ & =\frac{1}{x^{2}+m^{2}}+\frac{1}{x^{2}+n^{2}}\\ & =\frac{1}{m^{2}}+\frac{1}{n^{2}}\\ & \leq\frac{1}{N^{2}}+\frac{1}{N^{2}}\\ & =\frac{2}{N^{2}}\\ & \leq\frac{2}{N}\\ & \leq2\epsilon \end{align*} となるので、\(f_{n}\left(x\right)=\frac{1}{x^{2}+n^{2}}\)は一様コーシー列になる。
ページ情報
タイトル | 一様コーシー列の定義 |
URL | https://www.nomuramath.com/jhorqk6g/ |
SNSボタン |
実数列の上極限と下極限の定義
\[
\limsup_{n\rightarrow\infty}a_{n}:=\lim_{n\rightarrow\infty}\sup_{k\geq n}a_{k}
\]
ワイエルシュトラスのM判定法(優級数判定法)
有界閉区間上の連続関数はリーマン可積分
有界閉区間上の連続関数はリーマン可積分である。
上限と下限・最大元と最小元・上極限と下極限との関係
\[
\inf_{n\in\mathbb{N}}\left(-a_{n}\right)=-\sup_{n\in\mathbb{N}}\left(a_{n}\right)
\]