位相空間での位相と開集合閉集合の定義
位相空間での位相と開集合閉集合の定義
または開集合の補集合は閉集合である。
(1)位相
集合\(X\)の部分集合族\(\mathcal{O}\)が次の(a)(b)(c)の3条件を満たすとき\(\mathcal{O}\)を\(X\)上での位相といい、\(\left(X,\mathcal{O}\right)\)を位相空間という。(a)空集合、全体集合
\[ \emptyset,X\in\mathcal{O} \](b)開集合の有限積集合
\[ \exists n\in\mathbb{N}_{0},\forall m\in\left\{ 1,\cdots,n\right\} ,O_{m}\in\mathcal{O}\rightarrow\bigcap_{k\in\left\{ 1,\cdots,n\right\} }O_{k}\in\mathcal{O} \](b-2)
\[ O_{1},\cdots,O_{n}\in\mathcal{O}\rightarrow\bigcap_{k=1}^{n}O_{k}\in\mathcal{O} \](b-3)
\[ \forall\mathcal{A}\subseteq\mathcal{O},\left|\mathcal{A}\right|<\infty\rightarrow\bigcap_{A\in\mathcal{A}}A\in\mathcal{O} \](b-4)
\[ O_{1},O_{2}\in\mathcal{O}\rightarrow O_{1}\cap O_{2}\in\mathcal{O} \](c)開集合の和集合
\[ \forall\lambda_{0}\in\Lambda,O_{\lambda_{0}}\in\mathcal{O}\rightarrow\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O} \](c-2)
\[ \forall\mathcal{A}\subseteq\mathcal{O},\bigcup_{A\in\mathcal{A}}A\in\mathcal{O} \](2)開集合
位相空間\(\left(X,\mathcal{O}\right)\)において\(\mathcal{O}\)の要素となる集合を\(X\)の開集合という。(3)閉集合
補集合が開集合のとき閉集合という。または開集合の補集合は閉集合である。
閉集合はフランス語でensemble fermeといい、開集合は英語でopen set、ドイツ語でgebiete、というので閉集合を\(F\)、開集合は\(O\)や\(G\)を使うことが多い。
ページ情報
タイトル | 位相空間での位相と開集合閉集合の定義 |
URL | https://www.nomuramath.com/jfenhmdq/ |
SNSボタン |
空集合は任意の集合の部分集合
\[
\emptyset\subseteq A
\]
3角関数のべき乗の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)dx=\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]
分母に1乗と2乗ルートの積分
\[
\int\frac{1}{\left(z\pm1\right)\sqrt{z^{2}-1}}dz=\frac{\sqrt{z^{2}-1}}{\pm z+1}+C
\]
距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義
\[
\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]