位相空間での位相と開集合閉集合の定義
位相空間での位相と開集合閉集合の定義
または開集合の補集合は閉集合である。
(1)位相
集合\(X\)の部分集合族\(\mathcal{O}\)が次の(a)(b)(c)の3条件を満たすとき\(\mathcal{O}\)を\(X\)上での位相といい、\(\left(X,\mathcal{O}\right)\)を位相空間という。(a)空集合、全体集合
\[ \emptyset,X\in\mathcal{O} \](b)開集合の有限積集合
\[ \exists n\in\mathbb{N}_{0},\forall m\in\left\{ 1,\cdots,n\right\} ,O_{m}\in\mathcal{O}\rightarrow\bigcap_{k\in\left\{ 1,\cdots,n\right\} }O_{k}\in\mathcal{O} \](b-2)
\[ O_{1},\cdots,O_{n}\in\mathcal{O}\rightarrow\bigcap_{k=1}^{n}O_{k}\in\mathcal{O} \](b-3)
\[ \forall\mathcal{A}\subseteq\mathcal{O},\left|\mathcal{A}\right|<\infty\rightarrow\bigcap_{A\in\mathcal{A}}A\in\mathcal{O} \](b-4)
\[ O_{1},O_{2}\in\mathcal{O}\rightarrow O_{1}\cap O_{2}\in\mathcal{O} \](c)開集合の和集合
\[ \forall\lambda_{0}\in\Lambda,O_{\lambda_{0}}\in\mathcal{O}\rightarrow\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O} \](c-2)
\[ \forall\mathcal{A}\subseteq\mathcal{O},\bigcup_{A\in\mathcal{A}}A\in\mathcal{O} \](2)開集合
位相空間\(\left(X,\mathcal{O}\right)\)において\(\mathcal{O}\)の要素となる集合を\(X\)の開集合という。(3)閉集合
補集合が開集合のとき閉集合という。または開集合の補集合は閉集合である。
閉集合はフランス語でensemble fermeといい、開集合は英語でopen set、ドイツ語でgebiete、というので閉集合を\(F\)、開集合は\(O\)や\(G\)を使うことが多い。
ページ情報
タイトル | 位相空間での位相と開集合閉集合の定義 |
URL | https://www.nomuramath.com/jfenhmdq/ |
SNSボタン |
2年生の夢(高さ2のテトレーションの0から1までの定積分)
\[
\int_{0}^{1}\frac{1}{x^{x}}dx=\sum_{k=1}^{\infty}\frac{1}{k^{k}}
\]
半順序集合・狭義半順序集合の辞書式順序
\[
\left(x_{1},y_{1}\right)\preceq\left(x_{2},y_{2}\right)\Leftrightarrow x_{1}\prec_{X}x_{2}\lor\left(x_{1}=x_{2}\land y_{1}\preceq_{Y}y_{2}\right)
\]
チェザロ総和とチェザロ平均の定義
\[
m_{n}=\frac{1}{n}\sum_{k=1}^{n}a_{n}
\]
順序集合の双対順序集合と狭義順序集合の狭義逆順序
\[
\succeq:=\left\{ \left(a,b\right)\in X^{2};b\preceq a\right\}
\]