対数の指数
(1)
\[ a=e^{\log a} \](2)
\[ a=b^{\log_{b}a} \](3)
\[ a^{\log_{b}c}=c^{\log_{b}a} \](1)
両辺に\(\log\)を作用させると成り立っている。(2)
両辺に\(\log_{b}\)を作用させると成り立っている。(3)
\begin{align*} a^{\log_{b}c} & =c^{\left(\log_{c}a\right)\log_{b}c}\\ & =c^{\frac{\log_{c}a}{\log_{c}b}}\\ & =c^{\log_{b}a} \end{align*}ページ情報
タイトル | 対数の指数 |
URL | https://www.nomuramath.com/j4jw5knc/ |
SNSボタン |
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
ラクランジュの未定乗数法
\[
F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right)
\]
連続関数の和・積・商
ウォリス積分の値
\[
\int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2}
\]