パスカルの法則の応用
パスカルの法則の応用
\(n\in\mathbb{N}_{0}\)とする。
(1)
\[ C\left(x+n,y+n\right)=C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right) \]
(2)
\[ C\left(x+n,y+n\right)=C\left(x,y\right)+\sum_{k=0}^{n-1}C\left(x+k,y+k+1\right) \]
(3)
\[ C\left(x+n,y+n\right)=\left(-1\right)^{n}\left\{ C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k}C\left(x+n+1,y+1+k\right)\right\} \]
(1)
\begin{align*} C\left(x+n,y+n\right) & =C\left(x+n-1,y+n\right)+C\left(x+n-1,y+n-1\right)\\ & =C\left(x,y+n\right)+\sum_{k=0}^{n-1}\left\{ C\left(x+n-k,y+n\right)-C\left(x+n-\left(k+1\right),y+n\right)\right\} \\ & =C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+n-\left(k+1\right),y+n-1\right)\\ & =C\left(x,y+n\right)+\sum_{k=1}^{n}C\left(x+n-k,y+n-1\right)\\ & =C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right) \end{align*}
(2)
\begin{align*} C\left(x+n,y+n\right) & =C\left(x+n-1,y+n\right)+C\left(x+n-1,y+n-1\right)\\ & =C\left(x,y\right)+\sum_{k=0}^{n-1}\left\{ C\left(x+n-k,y+n-k\right)-C\left(x+n-\left(k+1\right),y+n-\left(k+1\right)\right)\right\} \\ & =C\left(x,y\right)+\sum_{k=0}^{n-1}C\left(x+n-\left(k+1\right),y+n-k\right)\\ & =C\left(x,y\right)+\sum_{k=0}^{n-1}C\left(x+k,y+k+1\right) \end{align*}
(3)
\begin{align*} C\left(x+n,y+n\right) & =-C\left(x+n,y+n-1\right)+C\left(x+n+1,y+n\right)\\ & =\left(-1\right)^{n}C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left\{ \left(-1\right)^{k+1}C\left(x+n,y+n-k\right)-\left(-1\right)^{k}C\left(x+n,y+n-1-k\right)\right\} \\ & =\left(-1\right)^{n}C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k+1}\left\{ C\left(x+n,y+n-k\right)+C\left(x+n,y+n-1-k\right)\right\} \\ & =\left(-1\right)^{n}C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k+1}\left\{ C\left(x+n+1,y+n-k\right)\right\} \\ & =\left(-1\right)^{n}C\left(x+n,y\right)+\sum_{k=0}^{n-1}\left(-1\right)^{k}C\left(x+n+1,y+n-k\right)\\ & =\left(-1\right)^{n}C\left(x+n,y\right)+\sum_{k=0}^{n-1}\left(-1\right)^{n-1-k}C\left(x+n+1,y+1+k\right)\\ & =\left(-1\right)^{n}\left\{ C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k}C\left(x+n+1,y+1+k\right)\right\} \end{align*}
ページ情報
タイトル | パスカルの法則の応用 |
URL | https://www.nomuramath.com/bccs5wcu/ |
SNSボタン |