複素指数関数の極形式
複素指数関数の極形式
\[ \alpha^{\beta}=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)} \]
\[ \alpha^{\beta}=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)} \]
\begin{align*}
\alpha^{\beta} & =e^{\beta\log\alpha}\\
& =e^{\left(\Re\left(\beta\right)+i\Im\left(\beta\right)\right)\left(\ln\left|\alpha\right|+i\arg\alpha\right)}\\
& =e^{\left(\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\arg\alpha\right)+i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}\\
& =\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}
\end{align*}
ページ情報
タイトル | 複素指数関数の極形式 |
URL | https://www.nomuramath.com/glqo848l/ |
SNSボタン |
偏角の和と積の偏角
\[
\Arg\left(\alpha\right)+\Arg\left(\beta\right)=?\Arg\left(\alpha\beta\right)
\]
指数関数の実部と虚部
\[
\left|\alpha^{\beta}\right|=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\Arg\left(\alpha\right)}
\]
冪乗の性質
\[
\pv\alpha^{\beta}\pv\alpha^{\gamma}=\pv\alpha^{\beta+\gamma}
\]
対数と偏角の性質
\[
\log\alpha^{\beta}=\beta\log\alpha+\log1
\]