距離空間ならばハウスドルフ空間
距離空間ならばハウスドルフ空間
距離空間\(\left(X,d\right)\)ならばハウスドルフ空間となる。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)ならばハウスドルフ空間となる。
逆は一般的に成り立たない。
対偶をとると、ハウスドルフ空間でないならば距離空間とはならない。
\(\Rightarrow\)
距離空間\(\left(X,d\right)\)の任意の異なる2点\(x,y\)に対し、\(0<d\left(x,y\right)\)なので\(\epsilon=d\left(x,y\right)\)とおくと、開近傍\(U\left(x,\frac{\epsilon}{2}\right),U\left(y,\frac{\epsilon}{2}\right)\)は\(U\left(x,\frac{\epsilon}{2}\right)\cap U\left(y,\frac{\epsilon}{2}\right)=\emptyset\)を満たすのでハウスドルフ空間になる。\(\Leftarrow\)は一般的に成り立たない
上限位相が反例である。ページ情報
| タイトル | 距離空間ならばハウスドルフ空間 |
| URL | https://www.nomuramath.com/fs1izgfh/ |
| SNSボタン |
距離空間での集積点と閉包の点列による別定義
\[
x\in A^{d}\leftrightarrow\exists\left(x_{n}\right)_{n=1}^{\infty}\subseteq A\setminus\left\{ x\right\} ,\lim_{n\rightarrow\infty}x_{n}=x
\]
距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義
\[
\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
距離空間での連続を開近傍を使って表現
\[
\forall\epsilon>0,\exists\delta>0,f\left(U_{\delta}\left(a\right)\right)\subseteq U_{\epsilon}\left(f\left(a\right)\right)
\]
2つの距離関数と点列・開集合・閉集合の関係

