3角形関数の定義
3角形関数の定義
3角形関数\(\mathrm{tri}\left(x\right)\)は次で定義される。
\begin{align*} \mathrm{tri}\left(x\right) & :=\begin{cases} 0 & x<-1\\ 1+x & -1\leq x<0\\ 1-x & 0\leq x<1\\ 0 & 1\leq x \end{cases}\\ & =\begin{cases} 1-\left|x\right| & \left|x\right|<1\\ 0 & 1\leq\left|x\right| \end{cases}\\ & =\max\left(1-\left|x\right|,0\right)\\ & =\frac{1}{2}\left|x+1\right|+\frac{1}{2}\left|x-1\right|-\left|x\right| \end{align*}
3角形関数\(\mathrm{tri}\left(x\right)\)は次で定義される。
\begin{align*} \mathrm{tri}\left(x\right) & :=\begin{cases} 0 & x<-1\\ 1+x & -1\leq x<0\\ 1-x & 0\leq x<1\\ 0 & 1\leq x \end{cases}\\ & =\begin{cases} 1-\left|x\right| & \left|x\right|<1\\ 0 & 1\leq\left|x\right| \end{cases}\\ & =\max\left(1-\left|x\right|,0\right)\\ & =\frac{1}{2}\left|x+1\right|+\frac{1}{2}\left|x-1\right|-\left|x\right| \end{align*}
\(x\)軸で囲まれる面積は1、すなわち\(\int_{-1}^{1}\text{tri}\left(x\right)dx=1\)となります。
\begin{align*}
\frac{1}{2}\left|x+1\right|+\frac{1}{2}\left|x-1\right|-\left|x\right| & =\begin{cases}
-\frac{1}{2}\left(x+1\right)-\frac{1}{2}\left(x-1\right)+x & x<-1\\
\frac{1}{2}\left(x+1\right)-\frac{1}{2}\left(x-1\right)+x & -1\leq x<0\\
\frac{1}{2}\left(x+1\right)-\frac{1}{2}\left(x-1\right)-x & 0\leq x<1\\
\frac{1}{2}\left(x+1\right)+\frac{1}{2}\left(x-1\right)-x & 1\leq x
\end{cases}\\
& =\begin{cases}
0 & x<-1\\
x+1 & -1\leq x<0\\
-x+1 & 0\leq x<1\\
0 & 1\leq x
\end{cases}\\
& =\mathrm{tri}\left(x\right)
\end{align*}
ページ情報
タイトル | 3角形関数の定義 |
URL | https://www.nomuramath.com/fo42rrdo/ |
SNSボタン |
3引数論理演算を別表記
\[
P\lor\left(Q\lor R\right)\Leftrightarrow P\leftarrow\left(Q\downarrow R\right)
\]
文字を消去すると4次方程式
\[
\begin{cases}
x^{2}-2y=4\\
y^{2}-2x=4
\end{cases}
\]
分母分子に3角関数を含む定積分
\[
\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx=?
\]
サンクトペテルブルクのパラドックス
賞金が倍々に増えるゲームの参加費はいくらが妥当か?