不完全ガンマ関数とガンマ関数との関係
不完全ガンマ関数とガンマ関数との関係
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数、\(\Gamma\left(x\right)\)はガンマ関数\begin{align*}
\gamma\left(a,x\right)+\Gamma\left(a,x\right) & =\int_{0}^{x}t^{a-1}e^{-t}dt+\int_{x}^{\infty}t^{a-1}e^{-t}dt\\
& =\int_{0}^{\infty}t^{a-1}e^{-t}dt\\
& =\Gamma\left(a\right)
\end{align*}
ページ情報
タイトル | 不完全ガンマ関数とガンマ関数との関係 |
URL | https://www.nomuramath.com/flyweptl/ |
SNSボタン |
ガンマ関数のハンケル積分表示
\[
\Gamma\left(z\right)=\frac{i}{2\sin\left(\pi z\right)}\int_{C}\left(-\tau\right)^{z-1}e^{-\tau}d\tau
\]
(*)ガンマ関数と複素数
\[
\lim_{R\rightarrow\infty}\int_{0}^{Re^{i\theta}}z^{\alpha-1}e^{-z}dz=\Gamma\left(\alpha\right)
\]
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]
ガンマ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\frac{\Gamma\left(n\right)}{\Gamma\left(n+\frac{1}{2}\right)}=1
\]