開球同士が交わるときの包含関係
開球同士が交わるときの包含関係
距離空間\(\left(X,d\right)\)上に2つの開球\(B\left(x_{1},r_{1}\right),B\left(x_{2},r_{2}\right)\)があるとき、
\[ B\left(x_{1},r_{1}\right)\cap B\left(x_{2},r_{2}\right)\ne\emptyset\land r_{2}\leq r_{1}\Rightarrow B\left(x_{2},r_{2}\right)\subseteq B\left(x_{1},3r_{1}\right) \] が成り立つ。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)上に2つの開球\(B\left(x_{1},r_{1}\right),B\left(x_{2},r_{2}\right)\)があるとき、
\[ B\left(x_{1},r_{1}\right)\cap B\left(x_{2},r_{2}\right)\ne\emptyset\land r_{2}\leq r_{1}\Rightarrow B\left(x_{2},r_{2}\right)\subseteq B\left(x_{1},3r_{1}\right) \] が成り立つ。
逆は一般的に成り立たない。
\(\Rightarrow\)
任意の\(a\in B\left(x_{2},r_{2}\right)\)に対し、\(d\left(x_{1},a\right)\leq d\left(x_{1},x_{2}\right)+d\left(x_{2},a\right)<r_{1}+r_{2}+r_{2}=r_{1}+2r_{2}\leq r_{1}+2r_{1}=3r_{1}\)となるので\(a\in B\left(x_{1},3r_{1}\right)\)となる。従って\(B\left(x_{2},r_{2}\right)\subseteq B\left(x_{1},3r_{1}\right)\)となる。
\(\Leftarrow\)は一般的に成り立たない
反例で示す。距離空間は通常距離\(d\)をとり\(\left(\mathbb{R},d\right)\)とする。
\(B\left(0,1\right)\subseteq B\left(2,3\right)\)であっても\(B\left(2,1\right)\cap B\left(0,1\right)\ne\emptyset\land1\leq1\Leftrightarrow B\left(2,1\right)\cap B\left(0,1\right)\ne\emptyset\Leftrightarrow\bot\)と偽になるので\(\Leftarrow\)は一般的に成り立たない。
ページ情報
| タイトル | 開球同士が交わるときの包含関係 |
| URL | https://www.nomuramath.com/fesmlhon/ |
| SNSボタン |
距離空間ならばハウスドルフ空間
距離空間$\left(X,d\right)$ならばハウスドルフ空間となる。
距離空間での収束の定義と開集合による別定義
\[
\exists a\in X,\forall\epsilon>0,\exists N\in\mathbb{N},N<n\rightarrow d\left(a_{n},a\right)<\epsilon
\]
距離空間では連続と点列連続は同値
ルベーグの被覆補題
\[
\diam\left(A\right)<\delta\rightarrow A\subseteq U
\]

