1次式の総乗と階乗
1次式の総乗と階乗
\(a,b\in\mathbb{Z}\)とする。
\[ \prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)} \]
\(a,b\in\mathbb{Z}\)とする。
\[ \prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)} \]
(0)
\begin{align*} \prod_{k=a}^{b}\left(kn+r\right) & =n^{b-a+1}\prod_{k=a}^{b}\left(k+\frac{r}{n}\right)\\ & =n^{b-a+1}\prod_{k=a}^{b}\frac{\left(k+\frac{r}{n}\right)!}{\left(k+\frac{r}{n}-1\right)!}\\ & =n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)} \end{align*}(0)-2
\begin{align*} \prod_{k=a}^{b}\left(kn+r\right) & =\prod_{k=a}^{-1}\left(kn+r\right)\prod_{k=0}^{b}\left(kn+r\right)\\ & =\prod_{k=0}^{a-1}\left(kn+r\right)^{-1}\prod_{k=0}^{b}\left(kn+r\right)\\ & =\left\{ n^{a-1}r\frac{\left(a-1+\frac{r}{n}\right)!}{\frac{r}{n}!}\right\} ^{-1}n^{b}r\frac{\left(b+\frac{r}{n}\right)!}{\frac{r}{n}!}\\ & =n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\left(a+\frac{r}{n}-1\right)!}\\ & =n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)} \end{align*}ページ情報
タイトル | 1次式の総乗と階乗 |
URL | https://www.nomuramath.com/f039zr6h/ |
SNSボタン |
第1種・第2種不完全ガンマ関数の定義
\[
\Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt
\]
(*)ガンマ関数と複素数
\[
\lim_{R\rightarrow\infty}\int_{0}^{Re^{i\theta}}z^{\alpha-1}e^{-z}dz=\Gamma\left(\alpha\right)
\]
ガンマ関数と階乗の関係
\[
\Gamma(n+1)=n!
\]
ガンマ関数の微分
\[
\frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z)
\]