開基の基本性質
開基の基本性質
位相空間\(\left(X,\mathcal{O}\right)\)で\(\mathcal{B}\)が開基であることと、任意の開集合\(O\in\mathcal{O}\)と任意の元\(x\in O\)に対し、ある\(\mathcal{B}\)の元\(B\in\mathcal{B}\)が存在し、\(x\in B\subseteq O\)となることは同値である。
位相空間\(\left(X,\mathcal{O}\right)\)で\(\mathcal{B}\)が開基であることと、任意の開集合\(O\in\mathcal{O}\)と任意の元\(x\in O\)に対し、ある\(\mathcal{B}\)の元\(B\in\mathcal{B}\)が存在し、\(x\in B\subseteq O\)となることは同値である。
\(\Rightarrow\)
条件より\(\mathcal{B}\)は開基なので、任意の開集合\(O\in\mathcal{O}\)に対し、\(\mathcal{B}\)のある部分集合\(\left\{ B_{\lambda};\lambda\in\Lambda\right\} \subseteq\mathcal{B}\)が存在し\(O=\bigcup\left\{ B_{\lambda};\lambda\in\Lambda\right\} =\bigcup_{\lambda\in\Lambda}B_{\lambda}\)となる。従って任意の元\(x\in O\)に対し、ある\(\lambda\in\Lambda\)が存在し、\(x\in B_{\lambda}\)となる。
これより\(O=\bigcup_{\lambda\in\Lambda}B_{\lambda}\)なので\(B_{\lambda}\subseteq O\)となり、\(x\in B_{\lambda}\subseteq O\)となる。
故に\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)
条件より、任意の開集合\(O\in\mathcal{O}\)と任意の元\(x\in O\)に対し、ある\(\mathcal{B}\)の元\(B_{x}\in\mathcal{B}\)が存在し、\(x\in B_{x}\subseteq O\)となる。これより、任意の開集合\(O\)に対して、\(O=\bigcup_{x\in O}B_{x}\)とできるので\(\mathcal{B}\)は開基となる。
故に\(\Leftarrow\)が成り立つ。
\(\Leftrightarrow\)
これらより、\(\Rightarrow\)と\(\Leftarrow\)が成り立つので\(\Leftrightarrow\)が成り立つ。ページ情報
タイトル | 開基の基本性質 |
URL | https://www.nomuramath.com/ezz4tc0h/ |
SNSボタン |
合流型超幾何微分方程式の解
\[
xy''\left(x\right)+\left(b-x\right)y'\left(x\right)-ay\left(x\right)=0
\]
正接関数・双曲線正接関数の多重対数関数表示
\[
\tan^{\pm1}z=i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right)
\]
カントール集合の定義と性質
\[
C=\left[0,1\right]\setminus\bigcup_{j=1}^{\infty}\bigcup_{k=0}^{3^{j-1}-1}\left(\frac{3k+1}{3^{j}},\frac{3k+2}{3^{j}}\right)
\]
数列・関数の和・積・商・スカラー倍の極限
\[
\lim_{n\rightarrow\infty}a_{n}b_{n}=ab
\]