(*)フルヴィッツの公式
フルヴィッツの公式
\[ \zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\} \]
\[ \zeta\left(s,a\right)=\frac{2\Gamma\left(1-s\right)}{\left(2\pi\right)^{1-s}}\left\{ \sin\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\cos\left(2\pi ka\right)}{k^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\sin\left(2\pi ka\right)}{k^{1-s}}\right\} \]
\(\Gamma\left(z\right)\)はガンマ関数
\(\Li_{s}\left(z\right)\)は多重対数関数
(1)
\(1<\Re\left(s\right)\;\land\;0<a\leq1\)のとき、\[ \zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\} \]
(2)
\(\Re\left(s\right)<0\;\land\;0<a\leq1\)のとき、\[ \zeta\left(s,a\right)=\frac{2\Gamma\left(1-s\right)}{\left(2\pi\right)^{1-s}}\left\{ \sin\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\cos\left(2\pi ka\right)}{k^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\sin\left(2\pi ka\right)}{k^{1-s}}\right\} \]
-
\(\zeta\left(s,\alpha\right)\)はフルヴィッツ・ゼータ関数\(\Gamma\left(z\right)\)はガンマ関数
\(\Li_{s}\left(z\right)\)は多重対数関数
略
ページ情報
| タイトル | (*)フルヴィッツの公式 |
| URL | https://www.nomuramath.com/dv9im424/ |
| SNSボタン |
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束
ゼータ関数とイータ関数とガンマ関数
\[
\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}dx
\]
リーマン・ゼータ関数の定義
\[
\zeta\left(s\right):=\sum_{k=1}^{\infty}\frac{1}{k^{s}}
\]

