(*)フルヴィッツの公式
フルヴィッツの公式
\[ \zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\} \]
\[ \zeta\left(s,a\right)=\frac{2\Gamma\left(1-s\right)}{\left(2\pi\right)^{1-s}}\left\{ \sin\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\cos\left(2\pi ka\right)}{k^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\sin\left(2\pi ka\right)}{k^{1-s}}\right\} \]
\(\Gamma\left(z\right)\)はガンマ関数
\(\Li_{s}\left(z\right)\)は多重対数関数
(1)
\(1<\Re\left(s\right)\;\land\;0<a\leq1\)のとき、\[ \zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\} \]
(2)
\(\Re\left(s\right)<0\;\land\;0<a\leq1\)のとき、\[ \zeta\left(s,a\right)=\frac{2\Gamma\left(1-s\right)}{\left(2\pi\right)^{1-s}}\left\{ \sin\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\cos\left(2\pi ka\right)}{k^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\sin\left(2\pi ka\right)}{k^{1-s}}\right\} \]
-
\(\zeta\left(s,\alpha\right)\)はフルヴィッツ・ゼータ関数\(\Gamma\left(z\right)\)はガンマ関数
\(\Li_{s}\left(z\right)\)は多重対数関数
略
ページ情報
タイトル | (*)フルヴィッツの公式 |
URL | https://www.nomuramath.com/dv9im424/ |
SNSボタン |
ζ(4k)の総和
\[
\sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi
\]
リーマン・ゼータ関数のローラン展開
\[
\zeta\left(s\right)=\frac{1}{s-1}-\frac{1}{2}-s\int_{1}^{n}\frac{t-\left\lfloor t\right\rfloor -\frac{1}{2}}{t^{s+1}}dt
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
ゼータ関数の交代級数
\[
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2}
\]