不完全ベータ関数の漸化式
不完全ベータ関数の漸化式
不完全ベータ関数\(B\left(z;\alpha,\beta\right)\)は次の漸化式を満たす。
不完全ベータ関数\(B\left(z;\alpha,\beta\right)\)は次の漸化式を満たす。
(1)
\[ B\left(z;\alpha+1,\beta\right)=\frac{1}{\alpha+\beta}\left(\alpha B\left(z;\alpha,\beta\right)-z^{\alpha}\left(1-z\right)^{\beta}\right) \](2)
\[ B\left(z;\alpha,\beta+1\right)=\frac{1}{\alpha+\beta}\left(\beta B\left(z;\alpha,\beta\right)+z^{\alpha}\left(1-z\right)^{\beta}\right) \](1)
\begin{align*} B\left(z;\alpha+1,\beta\right) & =\int_{0}^{z}t^{\alpha}\left(1-t\right)^{\beta-1}dt\\ & =-\frac{1}{\beta}\left[t^{\alpha}\left(1-t\right)^{\beta}\right]_{0}^{z}+\frac{\alpha}{\beta}\int_{0}^{z}t^{\alpha-1}\left(1-t\right)^{\beta}dt\\ & =-\frac{1}{\beta}z^{\alpha}\left(1-z\right)^{\beta}+\frac{\alpha}{\beta}\int_{0}^{z}t^{\alpha-1}\left(1-t\right)\left(1-t\right)^{\beta-1}dt\\ & =-\frac{1}{\beta}z^{\alpha}\left(1-z\right)^{\beta}+\frac{\alpha}{\beta}\left(\int_{0}^{z}t^{\alpha-1}\left(1-t\right)^{\beta-1}dt-\int_{0}^{z}t^{\alpha}\left(1-t\right)^{\beta-1}dt\right)\\ & =-\frac{1}{\beta}z^{\alpha}\left(1-z\right)^{\beta}+\frac{\alpha}{\beta}B\left(z;\alpha,\beta\right)-\frac{\alpha}{\beta}\LHS\\ & =\frac{1}{\alpha+\beta}\left(\alpha B\left(z;\alpha,\beta\right)-z^{\alpha}\left(1-z\right)^{\beta}\right) \end{align*}(2)
\begin{align*} B\left(z;\alpha,\beta+1\right) & =\int_{0}^{z}t^{\alpha-1}\left(1-t\right)^{\beta}dt\\ & =\frac{1}{\alpha}\left[t^{\alpha}\left(1-t\right)^{\beta}\right]_{0}^{z}+\frac{\beta}{\alpha}\int_{0}^{z}t^{\alpha}\left(1-t\right)^{\beta-1}dt\\ & =\frac{1}{\alpha}z^{\alpha}\left(1-z\right)^{\beta}-\frac{\beta}{\alpha}\int_{0}^{z}t^{\alpha-1}\left(1-t-1\right)\left(1-t\right)^{\beta-1}dt\\ & =\frac{1}{\alpha}z^{\alpha}\left(1-z\right)^{\beta}-\frac{\beta}{\alpha}\left(\int_{0}^{z}t^{\alpha-1}\left(1-t\right)^{\beta}dt-\int_{0}^{z}t^{\alpha-1}\left(1-t\right)^{\beta-1}dt\right)\\ & =\frac{1}{\alpha}z^{\alpha}\left(1-z\right)^{\beta}-\frac{\beta}{\alpha}\LHS+\frac{\beta}{\alpha}B\left(z;\alpha,\beta\right)\\ & =\frac{1}{\alpha+\beta}\left(\beta B\left(z;\alpha,\beta\right)+z^{\alpha}\left(1-z\right)^{\beta}\right) \end{align*}ページ情報
タイトル | 不完全ベータ関数の漸化式 |
URL | https://www.nomuramath.com/d81qjp8b/ |
SNSボタン |
ベータ関数の対称性
\[
B\left(\alpha,\beta\right)=B\left(\beta,\alpha\right)
\]
ベータ関数の絶対収束条件
ベータ関数$B\left(p,q\right)$は$\Re\left(p\right)>0\;\land\;\Re\left(q\right)>0$で絶対収束
ベータ関数・不完全ベータ関数・正則ベータ関数の定義
\[
B\left(\alpha,\beta\right)=\int_{0}^{1}t^{\alpha-1}\left(1-t\right)^{\beta-1}dt
\]
ベータ関数の微分
\[
\frac{\partial}{\partial x}B(x,y)=B(x,y)\left\{ \psi(x)-\psi(x+y)\right\}
\]