複素ガンマ関数2つを含む広義積分
複素ガンマ関数2つを含む広義積分
次の定積分を求めよ。
\[ \int_{-\infty}^{\infty}\Gamma\left(1-ix\right)\Gamma\left(1+ix\right)dx=? \]
次の定積分を求めよ。
\[ \int_{-\infty}^{\infty}\Gamma\left(1-ix\right)\Gamma\left(1+ix\right)dx=? \]
-
\(\Gamma\left(x\right)\)はガンマ関数\begin{align*}
\int_{-\infty}^{\infty}\Gamma\left(1-ix\right)\Gamma\left(1+ix\right)dx & =\int_{-\infty}^{\infty}ix\Gamma\left(1-ix\right)\Gamma\left(ix\right)dx\\
& =\int_{-\infty}^{\infty}ix\frac{\pi}{\sin\left(i\pi x\right)}dx\\
& =\int_{-\infty}^{\infty}\frac{x\pi}{\sinh\left(\pi x\right)}dx\\
& =\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{x}{\sinh\left(x\right)}dx\cmt{\pi x\rightarrow x}\\
& =\frac{2}{\pi}\int_{0}^{\infty}\frac{x}{\sinh\left(x\right)}dx\\
& =\frac{4}{\pi}\int_{0}^{\infty}\frac{x}{e^{x}-e^{-x}}dx\\
& =\frac{4}{\pi}\int_{0}^{\infty}\frac{xe^{-x}}{1-e^{-2x}}dx\\
& =\frac{4}{\pi}\int_{0}^{\infty}xe^{-x}\sum_{k=0}^{\infty}e^{-2kx}dx\cmt{\because0<x\rightarrow\left|e^{-2x}\right|<1}\\
& =\frac{4}{\pi}\sum_{k=0}^{\infty}\int_{0}^{\infty}xe^{-\left(2k+1\right)x}dx\cmt{\text{積分と総和の順序変更}}\\
& =\frac{4}{\pi}\sum_{k=0}^{\infty}\frac{1}{\left(2k+1\right)^{2}}\int_{0}^{\infty}xe^{-x}dx\cmt{\left(2k+1\right)x\rightarrow x}\\
& =\frac{4}{\pi}\sum_{k=0}^{\infty}\frac{1}{\left(2k+1\right)^{2}}1!\\
& =\frac{4}{\pi}\sum_{k=0}^{\infty}\frac{1}{\left(2k+1\right)^{2}}\\
& =\frac{4}{\pi}\left(\sum_{k=0}^{\infty}\frac{1}{k^{2}}-\sum_{k=0}^{\infty}\frac{1}{\left(2k\right)^{2}}\right)\\
& =\frac{4}{\pi}\left(1-\frac{1}{2^{2}}\right)\zeta\left(2\right)\\
& =\frac{3}{\pi}\cdot\frac{\pi^{2}}{6}\\
& =\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | 複素ガンマ関数2つを含む広義積分 |
URL | https://www.nomuramath.com/d3i8me1v/ |
SNSボタン |
分子が対数で分母が多項式の定積分
\[
\int_{0}^{\infty}\frac{\log x}{x^{n}+1}dx=?
\]
指数関数を分母と分子に含む対数の定積分
\[
\int_{0}^{\infty}\log\left(\frac{e^{x}-1}{e^{x}+1}\right)dx=?
\]
分母に2乗根と3乗根の積分
\[
\int\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx=2x^{\frac{1}{2}}-3x^{\frac{1}{3}}+6x^{\frac{1}{6}}-6\log\left(1+x^{\frac{1}{6}}\right)
\]
イータ関数の導関数がでてきます
\[
\int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx=?
\]