γとπが出てくる定積分

γとπが出てくる定積分
\[ \int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx=? \]
\begin{align*} \int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx & =\left[\frac{d^{2}}{dt^{2}}\int_{0}^{\infty}e^{-x}x^{t}dx\right]_{t=0}\\ & =\left[\frac{d^{2}}{dt^{2}}\Gamma\left(t+1\right)\right]_{t=0}\\ & =\left[\frac{d}{dt}\Gamma\left(t+1\right)\frac{d}{dt}\log\left(\Gamma\left(t+1\right)\right)\right]_{t=0}\\ & =\left[\frac{d}{dt}\Gamma\left(t+1\right)\psi\left(t+1\right)\right]_{t=0}\\ & =\left[\psi\left(t+1\right)\frac{d}{dt}\Gamma\left(t+1\right)+\Gamma\left(t+1\right)\frac{d}{dt}\psi\left(t+1\right)\right]_{t=0}\\ & =\left[\psi\left(t+1\right)\Gamma\left(t+1\right)\psi\left(t+1\right)+\Gamma\left(t+1\right)\psi^{\left(1\right)}\left(t+1\right)\right]_{t=0}\\ & =\left[\Gamma\left(t+1\right)\left(\psi^{2}\left(t+1\right)+\psi^{\left(1\right)}\left(t+1\right)\right)\right]_{t=0}\\ & =\psi^{2}\left(1\right)+\psi^{\left(1\right)}\left(1\right)\\ & =\left(-\gamma\right)^{2}-\left(-1\right)^{1}1!\zeta\left(1+1\right)\\ & =\gamma^{2}+\zeta\left(2\right)\\ & =\gamma^{2}+\frac{\pi^{2}}{6} \end{align*}

ページ情報
タイトル
γとπが出てくる定積分
URL
https://www.nomuramath.com/wioj9afq/
SNSボタン