tanの平方根の積分
tanの平方根の積分
\[ \int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C \]
\[ \int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C \]
\begin{align*}
\int\sqrt{\tan x}dx & =2\int\frac{t^{2}}{t^{4}+1}dt\cmt{t=\sqrt{\tan x}}\\
& =\frac{1}{\sqrt{2}}\int t^{2}\left(-\frac{t-\sqrt{2}}{t^{2}-\sqrt{2}t+1}+\frac{t+\sqrt{2}}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(-t+\frac{t}{t^{2}-\sqrt{2}t+1}+t-\frac{t}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(\frac{t}{t^{2}-\sqrt{2}t+1}-\frac{t}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(\frac{\frac{1}{2}\left(t^{2}-\sqrt{2}t+1\right)'}{t^{2}-\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{t^{2}-\sqrt{2}t+1}-\frac{\frac{1}{2}\left(t^{2}+\sqrt{2}t+1\right)'}{t^{2}+\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(\frac{\frac{1}{2}\left(t^{2}-\sqrt{2}t+1\right)'}{t^{2}-\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{\left(t-\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}}-\frac{\frac{1}{2}\left(t^{2}+\sqrt{2}t+1\right)'}{t^{2}+\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{\left(t+\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}}\right)dt\\
& =\frac{1}{\sqrt{2}}\left(\frac{1}{2}\log\left(t^{2}-\sqrt{2}t+1\right)+\frac{\sqrt{2}}{2}\sqrt{2}\tan^{\bullet}\left(\sqrt{2}t-1\right)-\frac{1}{2}\log\left(t^{2}+\sqrt{2}t+1\right)+\frac{\sqrt{2}}{2}\sqrt{2}\tan^{\bullet}\left(\sqrt{2}t+1\right)\right)+C\\
& =\frac{\sqrt{2}}{4}\log\left(t^{2}-\sqrt{2}t+1\right)-\frac{\sqrt{2}}{4}\log\left(t^{2}+\sqrt{2}t+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2}t-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2}t+1\right)+C\\
& =\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\end{align*}
ページ情報
タイトル | tanの平方根の積分 |
URL | https://www.nomuramath.com/xhw9ax46/ |
SNSボタン |
分母に1乗と2乗ルートの積分
\[
\int\frac{1}{\left(z\pm1\right)\sqrt{z^{2}-1}}dz=\frac{\sqrt{z^{2}-1}}{\pm z+1}+C
\]
分母分子に3角関数を含む定積分
\[
\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx=?
\]
複雑な2重根号を含む定積分
\[
\int_{-\frac{1}{2}}^{\frac{1}{2}}\sqrt{x^{2}+1+\sqrt{x^{4}+x^{2}+1}}dx=?
\]
床関数の総和の2乗の定積分
\[
\int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}x\right\rfloor }{3^{k}}\right)^{2}dx=?
\]