階乗と冪乗の極限
階乗と冪乗の極限
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\begin{align*}
\lim_{n\rightarrow\infty}\frac{x^{n}}{n!} & =\lim_{n\rightarrow\infty}\prod_{k=1}^{n}\frac{x}{k}\\
& =0
\end{align*}
ページ情報
タイトル | 階乗と冪乗の極限 |
URL | https://www.nomuramath.com/bs5ajhr9/ |
SNSボタン |
ライプニッツ級数
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]
ウォリス積分を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\sqrt{\frac{\pi}{2}}
\]