逆2乗の別表示
逆2乗の別表示
\[ \frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx \]
\[ \frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx \]
\begin{align*}
\frac{1}{(k+1)^{2}} & =\frac{1}{(k+1)}\int_{0}^{1}x^{k}dx\\
& =\frac{1}{(k+1)}\left(\left[x^{k+1}\log x\right]_{0}^{1}-\left(k+1\right)\int_{0}^{1}x^{k}\log xdx\right)\\
& =-\int_{0}^{1}x^{k}\log xdx
\end{align*}
ページ情報
タイトル | 逆2乗の別表示 |
URL | https://www.nomuramath.com/bjnx3ppm/ |
SNSボタン |
巾関数の積分表現
\[
\frac{1}{z^{\alpha}}=\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt
\]
凸関数・狭義凸関数・凹関数・狭義凹関数の基本性質
関数$f$が2回微分可能であるとき、$f''>0$ならば$f$が狭義凸関数となるが、逆は一般的に成り立たない。
指数型不等式
\[
\sgn\left(x^{n+1}\right)\sum_{k=0}^{n}\frac{x^{k}}{k!}\leq\sgn\left(x^{n+1}\right)e^{x}
\]
エジプト式分数の個数
エジプト式分数は無数に存在する。