(*)log(1-x)のn乗の展開
\(n\in\mathbb{N}_{0}\)とする。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
略
ページ情報
タイトル | (*)log(1-x)のn乗の展開 |
URL | https://www.nomuramath.com/bfzjrvry/ |
SNSボタン |
関数の極限の定義
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]
ウォリス積分の値
\[
\int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2}
\]
対数の基本公式
\[
\log M+\log N=\log MN
\]
C1級・全微分可能・偏微分可能・連続の関係
\[
C^{1}\text{級}\Rightarrow\text{全微分可能}\Rightarrow\text{偏微分可能}
\]