積分問題
\(n\in\mathbb{N}\)のとき、
\[ \int_{0}^{\infty}\frac{1}{1+x^{n}}dx \] を求めよ。
\[ \int_{0}^{\infty}\frac{1}{1+x^{n}}dx \] を求めよ。
\begin{align*}
\int_{0}^{\infty}\frac{1}{1+x^{n}}dx & =\frac{1}{n}\int_{0}^{\infty}\frac{y^{\frac{1}{n}-1}}{1+y}dy\qquad,\qquad y=x^{n}\\
& =\frac{1}{n}\int_{0}^{1}z^{-\frac{1}{n}}(1-z)^{\frac{1}{n}-1}dz\qquad,\qquad z=\frac{1}{1+y}\\
& =\frac{1}{n}B\left(1-\frac{1}{n},\frac{1}{n}\right)\qquad,\qquad B\text{はベーター関数}\\
& =\frac{1}{n}\varGamma\left(1-\frac{1}{n}\right)\varGamma\left(\frac{1}{n}\right)\qquad,\qquad B\text{と}\varGamma\text{との関係}B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\\
& =\frac{\pi}{n}\sin^{-1}\frac{\pi}{n}\qquad,\qquad\text{相反公式}\Gamma(x)\Gamma(1-x)=\pi\sin^{-1}\pi x
\end{align*}
ページ情報
| タイトル | 積分問題 |
| URL | https://www.nomuramath.com/aqufozzl/ |
| SNSボタン |
ウォリス積分の定義
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta
\]
ウォリス積分の同表示
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta
\]
コーシーの関数方程式と関数方程式の基本
\[
f(x+y)=f(x)+f(y)
\]
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]

