積分問題
\(n\in\mathbb{N}\)のとき、
\[ \int_{0}^{\infty}\frac{1}{1+x^{n}}dx \] を求めよ。
\[ \int_{0}^{\infty}\frac{1}{1+x^{n}}dx \] を求めよ。
\begin{align*}
\int_{0}^{\infty}\frac{1}{1+x^{n}}dx & =\frac{1}{n}\int_{0}^{\infty}\frac{y^{\frac{1}{n}-1}}{1+y}dy\qquad,\qquad y=x^{n}\\
& =\frac{1}{n}\int_{0}^{1}z^{-\frac{1}{n}}(1-z)^{\frac{1}{n}-1}dz\qquad,\qquad z=\frac{1}{1+y}\\
& =\frac{1}{n}B\left(1-\frac{1}{n},\frac{1}{n}\right)\qquad,\qquad B\text{はベーター関数}\\
& =\frac{1}{n}\varGamma\left(1-\frac{1}{n}\right)\varGamma\left(\frac{1}{n}\right)\qquad,\qquad B\text{と}\varGamma\text{との関係}B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\\
& =\frac{\pi}{n}\sin^{-1}\frac{\pi}{n}\qquad,\qquad\text{相反公式}\Gamma(x)\Gamma(1-x)=\pi\sin^{-1}\pi x
\end{align*}
ページ情報
タイトル | 積分問題 |
URL | https://www.nomuramath.com/aqufozzl/ |
SNSボタン |
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
階乗と冪乗の極限
\[
\lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0
\]
ベッセル関数のポアソン積分表示
\[
J_{\nu}(z)=\frac{1}{\sqrt{\pi}\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{z}{2}\right)^{\nu}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{izt}dt
\]
ファウルハーバー公式(冪乗和公式)
\[
\sum_{j=1}^{n}j^{m}=\frac{1}{m+1}\left(B_{m+1}(n+1)-B_{m+1}(1)\right)
\]