円周率
円の周長を\(L\)、直径を\(d\)としたとき円周率\(\pi\)を
\[ \pi=\frac{L}{d} \] で定義する。
\[ \pi=\frac{L}{d} \] で定義する。
\[
\pi=2\int_{0}^{1}\frac{1}{\sqrt{1-x^{2}}}dx
\]
が成り立つ。
円周率の定義より、半径\(r\)の円を考えると、
\begin{align*} \pi & =\frac{2}{2r}\int_{-r}^{r}\sqrt{\left(\frac{d}{dx}x\right)^{2}+\left(\frac{d}{dx}\sqrt{r^{2}-x^{2}}\right)^{2}}dx\\ & =\frac{1}{r}\int_{-r}^{r}\sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}}dx\\ & =\frac{2}{r}\int_{0}^{r}\frac{r}{\sqrt{r^{2}-x^{2}}}dx\\ & =2\int_{0}^{1}\frac{1}{\sqrt{1-t^{2}}}dt\qquad\text{(x=rtとおいた)} \end{align*} となる。これより与式は成り立つ。
\begin{align*} \pi & =\frac{2}{2r}\int_{-r}^{r}\sqrt{\left(\frac{d}{dx}x\right)^{2}+\left(\frac{d}{dx}\sqrt{r^{2}-x^{2}}\right)^{2}}dx\\ & =\frac{1}{r}\int_{-r}^{r}\sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}}dx\\ & =\frac{2}{r}\int_{0}^{r}\frac{r}{\sqrt{r^{2}-x^{2}}}dx\\ & =2\int_{0}^{1}\frac{1}{\sqrt{1-t^{2}}}dt\qquad\text{(x=rtとおいた)} \end{align*} となる。これより与式は成り立つ。
ページ情報
| タイトル | 円周率 |
| URL | https://www.nomuramath.com/agdnktsy/ |
| SNSボタン |
数列の極限での大小関係
\[
a_{n}<b_{n}\Rightarrow a\leq b
\]
合成関数の導関数・偏導関数
\[
\frac{df}{dt}=\sum_{k=1}^{n}\frac{\partial f}{\partial x_{k}}\frac{dx_{k}}{dt}
\]
偏微分の順序交換(シュワルツの定理)
\[
\frac{\partial^{2}f\left(x,y\right)}{\partial x\partial y}=\frac{\partial^{2}f\left(x,y\right)}{\partial y\partial x}
\]
C1級・全微分可能・偏微分可能・連続の関係
\[
C^{1}\text{級}\Rightarrow\text{全微分可能}\Rightarrow\text{偏微分可能}
\]

