正接関数・双曲線正接関数の多重対数関数表示
正接関数・双曲線正接関数の多重対数関数表示
正接関数・双曲線正接関数は多重対数関数を使って以下のように表示できる。
正接関数・双曲線正接関数は多重対数関数を使って以下のように表示できる。
(1)正接関数
\[ \tan^{\pm1}z=i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right) \](2)双曲線正接関数
\[ \tanh^{\pm1}z=1+2\Li_{0}\left(\mp e^{-2z}\right) \]-
\(\Li_{n}\left(z\right)\)は多重対数関数(1)
\begin{align*} \tan^{\pm1}z & =i^{\mp1}\frac{e^{iz}\mp e^{-iz}}{e^{iz}\pm e^{-iz}}\\ & =i^{\mp1}\frac{e^{2iz}\mp1}{e^{2iz}\pm1}\\ & =-i^{\mp1}\frac{1\mp e^{2iz}}{1\pm e^{2iz}}\\ & =e^{-i\pi}e^{\mp\frac{\pi}{2}i}\frac{1\pm e^{2iz}\mp2e^{2iz}}{1\pm e^{2iz}}\\ & =e^{\pm\frac{\pi}{2}i}\left(1+2\frac{\mp e^{2iz}}{1\pm e^{2iz}}\right)\\ & =i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right) \end{align*}(2)
\begin{align*} \tanh^{\pm1}z & =\left(i^{-1}\tan\left(iz\right)\right)^{\pm1}\\ & =i^{\mp1}\tan^{\pm1}\left(iz\right)\\ & =i^{\mp1}i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{-2z}\right)\right)\\ & =1+2\Li_{0}\left(\mp e^{-2z}\right) \end{align*}ページ情報
| タイトル | 正接関数・双曲線正接関数の多重対数関数表示 |
| URL | https://www.nomuramath.com/d6pmhb0k/ |
| SNSボタン |
正弦と余弦のべき乗の積の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)\cos^{\beta}\left(x\right)dx=\frac{\cos^{\beta-1}}{\left(\cos^{2}\left(x\right)\right)^{\frac{\beta-1}{2}}}\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1-\beta}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]
3角関数のべき乗の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)dx=\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]
逆3角関数と逆双曲線関数の主値と2乗のルート
\[
\sin^{\bullet}\sin z=z\Rightarrow\sqrt{\cos^{2}z}=\cos z
\]
3角関数と逆3角関数・双曲線関数と逆双曲線関数の関係
\[
\sin^{\bullet}\sin z=z\Leftrightarrow\cos^{\bullet}\cos\left(\frac{\pi}{2}-z\right)=\frac{\pi}{2}-z
\]

