三角関数と双曲線関数の対数
三角関数の対数
対数を多価関数とすると以下が成り立つ。
対数を多価関数とすると以下が成り立つ。
(1)
\[ \log\sin x=-\log2+\frac{\pi}{2}i-ix-Li_{1}\left(e^{2ix}\right) \](2)
\[ \log\cos x=-\log2-ix-Li_{1}\left(-e^{2ix}\right) \](3)
\[ \log\tan x=\frac{\pi}{2}i-Li_{1}\left(e^{2ix}\right)+Li_{1}\left(-e^{2ix}\right)+\log1 \](1)
\begin{align*} \log\sin x & =\log\frac{e^{ix}-e^{-ix}}{2i}\\ & =\log\frac{ie^{-ix}}{2}+\log\left(1-e^{2ix}\right)\\ & =-\log2+\frac{\pi}{2}i-ix-Li_{1}\left(e^{2ix}\right) \end{align*}(2)
\begin{align*} \log\cos x & =\log\frac{e^{ix}+e^{-ix}}{2}\\ & =\log\frac{e^{-ix}}{2}+\log\left(1+e^{2ix}\right)\\ & =-\log2-ix-Li_{1}\left(-e^{2ix}\right) \end{align*}(3)
\begin{align*} \log\tan x & =\log\sin x-\log\cos x\\ & =\frac{\pi}{2}i-Li_{1}\left(e^{2ix}\right)+Li_{1}\left(-e^{2ix}\right)+\log1 \end{align*}双曲線関数の対数
対数を多価関数とすると以下が成り立つ。
対数を多価関数とすると以下が成り立つ。
(1)
\[ \log\sinh x=-\log2+x-Li_{1}\left(e^{-2x}\right) \](2)
\[ \log\cosh x=-\log2+x-Li_{1}\left(-e^{-2x}\right) \](3)
\[ \log\tanh x=-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1 \](1)
\begin{align*} \log\sinh x & =\log\left(\frac{1}{i}\sin\left(ix\right)\right)\\ & =-\log i+\log\left(\sin\left(ix\right)\right)\\ & =-\frac{\pi}{2}i-\log2+\frac{\pi}{2}i+x-Li_{1}\left(e^{-2x}\right)\\ & =-\log2+x-Li_{1}\left(e^{-2x}\right) \end{align*}(2)
\begin{align*} \log\cosh x & =\log\cos\left(ix\right)\\ & =-\log2+x-Li_{1}\left(-e^{-2x}\right) \end{align*}(3)
\begin{align*} \log\tanh x & =\log\sinh x-\log\cosh x\\ & =-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1 \end{align*}(3)-2
\begin{align*} \log\tanh x & =\log\left(\frac{1}{i}\tan\left(ix\right)\right)\\ & =-\log i+\log\left(\tan\left(ix\right)\right)\\ & =-\frac{\pi}{2}i+\frac{\pi}{2}i-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1\\ & =-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1 \end{align*}ページ情報
タイトル | 三角関数と双曲線関数の対数 |
URL | https://www.nomuramath.com/ag3vh1ei/ |
SNSボタン |
三角関数と双曲線関数の半角公式
\[
\sin^{2}\frac{x}{2}=\frac{1-\cos x}{2}
\]
三角関数と双曲線関数の微分
\[
\frac{d}{dx}\tan x=\cos^{-2}x
\]
三角関数と双曲線関数のn乗積分
\[
\int\sin^{2n+m_{\pm}}xdx=\frac{\Gamma\left(n+\frac{1}{2}+\frac{m_{\pm}}{2}\right)}{\Gamma\left(n+1+\frac{m_{\pm}}{2}\right)}\left\{ -\frac{1}{2}\sum_{k=0}^{n-1}\left(\frac{\Gamma\left(k+1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(k+\frac{3}{2}+\frac{m_{\pm}}{2}\right)}\cos x\sin^{2k+1+m_{\pm}}x\right)+\frac{\Gamma\left(1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(\frac{1}{2}+\frac{m_{\pm}}{2}\right)}\int\sin^{m_{\pm}}xdx\right\}
\]
三角関数と双曲線関数の実部と虚部
\[
\sin z=\sin\left(\Re\left(z\right)\right)\cosh\left(\Im\left(z\right)\right)+i\cos\left(\Re\left(z\right)\right)\sinh\left(\Im\left(z\right)\right)
\]