集合族の和集合と積集合の定義
集合族の和集合と積集合の定義
集合族\(\mathcal{A}=\left\{ A_{\lambda}\right\} _{\lambda\in\Lambda}\)が与えられているとする。
このとき、集合族の和集合と積集合を以下で定義する。
集合族\(\mathcal{A}=\left\{ A_{\lambda}\right\} _{\lambda\in\Lambda}\)が与えられているとする。
このとき、集合族の和集合と積集合を以下で定義する。
(1)集合族の和集合
\[ \bigcup\mathcal{A}=\bigcup_{\lambda\in\Lambda}A_{\lambda}=\left\{ x;\exists\lambda\in\Lambda,x\in A_{\lambda}\right\} \](2)集合族の積集合
\[ \bigcap\mathcal{A}=\bigcap_{\lambda\in\Lambda}A_{\lambda}=\left\{ x;\forall\lambda\in\Lambda,x\in A_{\lambda}\right\} \]\(\mathcal{A}=\left\{ \left\{ a,b\right\} ,\left\{ a,c\right\} ,\left\{ a,d\right\} ,\left\{ a,b,c\right\} \right\} \)とすると、
\[ \bigcup\mathcal{A}=\left\{ a,b\right\} \cup\left\{ a,c\right\} \cup\left\{ a,d\right\} \cup\left\{ a,b,c\right\} =\left\{ a,b,c,d\right\} \] \[ \bigcap\mathcal{A}=\left\{ a,b\right\} \cap\left\{ a,c\right\} \cap\left\{ a,d\right\} \cap\left\{ a,b,c\right\} =\left\{ a\right\} \] となる。
\[ \bigcup\mathcal{A}=\left\{ a,b\right\} \cup\left\{ a,c\right\} \cup\left\{ a,d\right\} \cup\left\{ a,b,c\right\} =\left\{ a,b,c,d\right\} \] \[ \bigcap\mathcal{A}=\left\{ a,b\right\} \cap\left\{ a,c\right\} \cap\left\{ a,d\right\} \cap\left\{ a,b,c\right\} =\left\{ a\right\} \] となる。
ページ情報
タイトル | 集合族の和集合と積集合の定義 |
URL | https://www.nomuramath.com/jz5cse2b/ |
SNSボタン |
3変数3次対称式の因数分解
\[
\left(x+y+z\right)^{3}-\left(x^{3}+y^{3}+z^{3}\right)\text{を因数分解せよ}
\]
誕生日問題
何人いれば誕生日が同じ人がいる確率が50%を超える?
三角関数と双曲線関数の微分
\[
\frac{d}{dx}\tan x=\cos^{-2}x
\]
T1空間と同値な条件
T1空間と単集合が閉集合は同値となる。