交わりと互いに素の定義
交わりと互いに素の定義
集合\(A,B\)がある。
\(A\cap B\ne\emptyset\)のとき、「\(A\)と\(B\)は交わる」という。
\(A\cap B=\emptyset\)のとき、「\(A\)と\(B\)は交わらない」または「\(A\)と\(B\)は互いに素」という。
集合\(A,B\)がある。
\(A\cap B\ne\emptyset\)のとき、「\(A\)と\(B\)は交わる」という。
\(A\cap B=\emptyset\)のとき、「\(A\)と\(B\)は交わらない」または「\(A\)と\(B\)は互いに素」という。
\(\left\{ a,b\right\} \cap\left\{ a,c\right\} =\left\{ a\right\} \ne\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ a,c\right\} \)は交わる。
\(\left\{ a,b\right\} \cap\left\{ c,d\right\} =\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ c,d\right\} \)は互いに素となる。
\(\left\{ a,b\right\} \cap\left\{ c,d\right\} =\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ c,d\right\} \)は互いに素となる。
ページ情報
タイトル | 交わりと互いに素の定義 |
URL | https://www.nomuramath.com/axa1b1jx/ |
SNSボタン |
『距離空間での完備と閉集合の関係』を更新しました。
第1余弦定理と第2余弦定理
\[
a^{2}=b^{2}+c^{2}-2bc\cos A
\]
気付けば一瞬で解ける問題
\[
x+\sqrt{x}=3\;,\;x+\frac{3}{\sqrt{x}}=?
\]
ハウスドルフ空間とT1空間の点列の極限点
ハウスドルフ空間ならば、点列の極限点が存在すれば一意的に決まる。