空集合は任意の集合の部分集合
空集合は任意の集合の部分集合
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
\(\emptyset\subseteq\emptyset\)や\(A\subseteq A\)も常に成り立つ。
また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
-
\(A=\left\{ a\right\} \)のとき、\(a\in A\)であるが\(\left\{ a\right\} \in A\)ではない。また\(\left\{ a\right\} \subseteq A\)であるが、\(a\subseteq A\)ではない。また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
任意の\(x\in\emptyset\)は常に偽なので、\(\emptyset\subseteq A\Leftrightarrow\forall x\left(x\in\emptyset\rightarrow x\in A\right)\)は真になる。
故に題意は成り立つ。
故に題意は成り立つ。
ページ情報
タイトル | 空集合は任意の集合の部分集合 |
URL | https://www.nomuramath.com/xiaki13l/ |
SNSボタン |
複素指数関数の極形式
\[
\alpha^{\beta}=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}
\]
スターリング数の簡単な値
\[
S_{1}\left(0,k\right)=\delta_{0k}
\]
ウォリス積分を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\sqrt{\frac{\pi}{2}}
\]
n乗同士の和と差の因数分解
\[
a^{2n+1}\pm b^{2n+1}=\left(a\pm b\right)\left(\sum_{k=0}^{2n}\left(\mp1\right)^{k}a^{2n-k}b^{k}\right)
\]