空集合は任意の集合の部分集合
空集合は任意の集合の部分集合
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
\(\emptyset\subseteq\emptyset\)や\(A\subseteq A\)も常に成り立つ。
また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
-
\(A=\left\{ a\right\} \)のとき、\(a\in A\)であるが\(\left\{ a\right\} \in A\)ではない。また\(\left\{ a\right\} \subseteq A\)であるが、\(a\subseteq A\)ではない。また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
任意の\(x\in\emptyset\)は常に偽なので、\(\emptyset\subseteq A\Leftrightarrow\forall x\left(x\in\emptyset\rightarrow x\in A\right)\)は真になる。
故に題意は成り立つ。
故に題意は成り立つ。
ページ情報
タイトル | 空集合は任意の集合の部分集合 |
URL | https://www.nomuramath.com/xiaki13l/ |
SNSボタン |
階段の上り方は何通りあるか?
1回で1段または2段上れるとき何通りの上り方があるか。
[2021年福島大学後期・数学第1問]因数分解
$x^{4}+x^{2}+1+2xy-y^{2}$を因数分解。
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]
[word]数式オートコレクトのバックアップ・移行方法