包含関係は半順序関係
包含関係は半順序関係
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
\(A,B,C\)を集合とする。
反射律
\(\forall x\left(x\in A\rightarrow x\in A\right)\Rightarrow A\subseteq A\)なので\(A\subseteq A\)となり反射律を満たす。反対称律
\(A=B\Leftrightarrow A\subseteq B\land B\subseteq A\)なので\(A\subseteq B\land B\subseteq A\Rightarrow A=B\)となり、反対称律を満たす。推移律
\begin{align*} A\subseteq B\land B\subseteq C & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\forall x\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left\{ \left(\lnot x\in A\lor x\in B\right)\land\left(\lnot x\in B\lor x\in C\right)\right\} \\ & \Rightarrow\forall x\left\{ \lnot x\in A\lor x\in B\lor\lnot x\in B\lor x\in C\right\} \\ & \Leftrightarrow\forall x\left\{ \lnot x\in A\lor x\in C\right\} \\ & \Rightarrow\forall x\left(x\in A\rightarrow x\in C\right)\\ & \Leftrightarrow A\subseteq C \end{align*} となるので\(A\subseteq B\land B\subseteq C\Rightarrow A\subseteq C\)より、推移律を満たす。-
これらより、反射律・反対称律・推移律を満たすので半順序関係を満たす。ページ情報
タイトル | 包含関係は半順序関係 |
URL | https://www.nomuramath.com/v6yqewcp/ |
SNSボタン |
リーマン・ゼータ関数の定義
\[
\zeta\left(s\right):=\sum_{k=1}^{\infty}\frac{1}{k^{s}}
\]
濃度2以上の密着位相は距離化不可能
$2\leq\left|X\right|$となる密着位相$\left(X,\left\{ \emptyset,X\right\} \right)$は距離化不可能である。
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
3乗根の有理化
\[
\frac{1}{2\cdot3^{\frac{2}{3}}+3\cdot3^{\frac{1}{3}}+2}\text{の有理化}
\]