濃度2以上の密着位相は距離化不可能
濃度2以上の密着位相は距離化不可能
\(2\leq\left|X\right|\)となる密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)は距離化不可能である。
\(2\leq\left|X\right|\)となる密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)は距離化不可能である。
\(\left|X\right|<2\)のときは離散位相となるので距離化可能である。
(0)
\(2\leq\left|X\right|\)となる密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)の任意の元を含む開集合は\(X\)のみである。これより密着位相はハウスドルフ空間でないので距離空間とはならない。
すなわち距離化不可能である。
(0)-2
\(2\leq\left|X\right|\)となる密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)は距離化可能であると仮定する。任意の\(\epsilon>0\)に対し元\(x\in X\)の開近傍\(U_{\epsilon}\left(x\right)\)は\(\emptyset\lor X\)となるが\(x\)を含むため\(\emptyset\)ではないので\(X\)となり\(U_{\epsilon}\left(x\right)=X\)となる。
\(x\)と異なる任意の\(y\in X\)を選ぶと、\(y\in U_{\epsilon}\left(x\right)\)なので\(0<d\left(x,y\right)<\epsilon\)となるが\(\epsilon\)は任意の正の実数なのでいくらでも小さく出来て\(d\left(x,y\right)=0\)となり矛盾。
故に背理法より\(2\leq\left|X\right|\)となる密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)は距離化不可能である。
ページ情報
タイトル | 濃度2以上の密着位相は距離化不可能 |
URL | https://www.nomuramath.com/pcqx5wzb/ |
SNSボタン |
距離空間でε-近傍は開集合
\[
\forall U_{\epsilon}\left(a\right)\subseteq X,\forall a_{0}\in U_{\epsilon}\left(a\right),\exists\epsilon_{0}>0,U_{\epsilon_{0}}\left(a_{0}\right)\subseteq U_{\epsilon}\left(a\right)
\]
ε近傍(開球)の定義
\[
U\left(a,\epsilon\right)=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\}
\]
離散距離は距離空間
\[
d_{\delta}\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
0 & \boldsymbol{x}=\boldsymbol{y}\\
1 & \boldsymbol{x}\ne\boldsymbol{y}
\end{cases}
\]
距離関数は連続関数
距離空間$\left(X,d\right)$の距離関数$d:X\times X\rightarrow\mathbb{R}$は直積距離空間$\left(X\times X,d'\right)$上の連続関数である。