距離空間でのε-近傍・開集合・閉集合・開集合全体の集合・開集合族の定義
距離空間での\(\epsilon\)-近傍・開集合・開集合族・閉集合の定義
距離空間\(\left(X,d\right)\)が与えられているとする。
距離空間\(\left(X,d\right)\)が与えられているとする。
(1)\(\epsilon\)-近傍
\(a\in X,\epsilon>0\)に対して、\(U_{\epsilon}\left(a\right)=\left\{ x\in X;d\left(x,a\right)<\epsilon\right\} \)を\(\epsilon\)-近傍という。(2)開集合
\(\exists O\subseteq X,\forall a\in O,\exists\epsilon>0,U_{\epsilon}\left(a\right)\subseteq O\)が成り立つとき、\(O\)を開集合という。(3)閉集合
部分集合\(A\subseteq X\)の補集合\(A^{c}\)が開集合となるとき\(A\)は閉集合であるという。(4)開集合全体の集合
全ての開集合\(\lambda\in\Lambda,O_{\lambda}\)を要素に持つ族\(\mathcal{O}=\left\{ O_{\lambda}\right\} _{\lambda\in\Lambda}\)を\(\left(X,d\right)\)の開集合全体の集合\(\mathcal{O}\)という。(5)開集合族
任意の開集合\(\lambda\in\Lambda,O_{\lambda}\)を要素に持つ族\(\mathcal{U}=\left\{ O_{\lambda}\right\} _{\lambda\in\Lambda}\)を\(\left(X,d\right)\)の開集合族\(\mathcal{U}\)という。ページ情報
タイトル | 距離空間でのε-近傍・開集合・閉集合・開集合全体の集合・開集合族の定義 |
URL | https://www.nomuramath.com/yisj48n4/ |
SNSボタン |
パリ距離は距離空間
\[
d\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
\left|\boldsymbol{x}-\boldsymbol{y}\right| & \exists c\in\mathbb{R},\boldsymbol{y}=c\boldsymbol{x}\\
\left|\boldsymbol{x}\right|+\left|\boldsymbol{y}\right| & other
\end{cases}
\]
距離空間でε-近傍は開集合
\[
\forall U_{\epsilon}\left(a\right)\subseteq X,\forall a_{0}\in U_{\epsilon}\left(a\right),\exists\epsilon_{0}>0,U_{\epsilon_{0}}\left(a_{0}\right)\subseteq U_{\epsilon}\left(a\right)
\]
完備距離空間の部分集合は完備とは限らない
完備距離空間$\left(X,d_{X}\right)$の部分集合$A\subseteq X$は完備とは限らない。
距離空間での集積点と閉包の点列による別定義
\[
x\in A^{d}\leftrightarrow\exists\left(x_{n}\right)_{n=1}^{\infty}\subseteq A\setminus\left\{ x\right\} ,\lim_{n\rightarrow\infty}x_{n}=x
\]