ゼータ関数の交代級数
ゼータ関数の交代級数
\[ \sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2} \]
\[ \sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2} \]
\begin{align*}
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right) & =\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}\left(\frac{j}{j^{2k+1}}-\frac{1}{j^{2k+1}}\right)\\
& =\sum_{k=1}^{\infty}\sum_{j=2}^{\infty}\left(\frac{j-1}{j^{2k+1}}\right)\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j^{3}}\sum_{k=1}^{\infty}\left(\frac{1}{j^{2}}\right)^{k-1}\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j^{3}}\frac{1}{1-\frac{1}{j^{2}}}\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j^{3}-j}\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j(j+1)(j-1)}\\
& =\sum_{j=2}^{\infty}\frac{1}{j(j+1)}\\
& =\sum_{j=2}^{\infty}\left(\frac{1}{j}-\frac{1}{j+1}\right)\\
& =\frac{1}{2}
\end{align*}
ページ情報
タイトル | ゼータ関数の交代級数 |
URL | https://www.nomuramath.com/rjcjvzw7/ |
SNSボタン |
フルヴィッツ・ゼータ関数の積分表現
\[
\zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt
\]
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
フルヴィッツ・ゼータ関数の乗法定理
\[
n^{s}\zeta\left(s,nz\right)=\sum_{k=0}^{n-1}\zeta\left(s,z+\frac{k}{n}\right)
\]
リーマンゼータ関数とガンマ関数の関係
\[
\zeta(s)=\pi^{s-1}2^{s}\sin\frac{s\pi}{2}\Gamma\left(1-s\right)\zeta(1-s)
\]