ウォリス積分の定義
\(n\in\mathbb{N}_{0}\)とする。
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
ページ情報
| タイトル | ウォリス積分の定義 |
| URL | https://www.nomuramath.com/pf2syylr/ |
| SNSボタン |
偏微分・全微分・偏微分可能性・全微分可能性の定義
\[
df:=\sum_{k=1}^{n}\frac{\partial f\left(x_{1},x_{2},\cdots,x_{n}\right)}{\partial x_{i}}dx_{i}
\]
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]
ウォリス積分の同表示
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta
\]

