ウォリスの公式
ウォリスの公式
\[ \prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2} \]
\[ \prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2} \]
\begin{align*}
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right) & =\prod_{k=1}^{\infty}\left(\frac{(2k-1)(2k+1)}{(2k)}\right)^{-1}\\
& =\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}-1}{(2k)^{2}}\right)^{-1}\\
& =\frac{\pi}{2}\left\{ \frac{\pi}{2}\prod_{k=1}^{\infty}\left(1-\frac{\left(\frac{1}{2}\right)^{2}}{k^{2}}\right)\right\} ^{-1}\\
& =\frac{\pi}{2}\sin^{-1}\left(\frac{\pi}{2}\right)\qquad,\qquad\sin(\pi z)=\pi z\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)\\
& =\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | ウォリスの公式 |
URL | https://www.nomuramath.com/rszzqz7i/ |
SNSボタン |
円周率
円周率πの定義と積分での表示。
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]
中央2項係数の総和
\[
\sum_{k=0}^{\infty}C^{-1}\left(2k,k\right)=\frac{4}{3}+\frac{2\sqrt{3}\pi}{27}
\]
連続関数同士の合成関数は連続
\[
\lim_{x\rightarrow x_{0}}f\left(g\left(x\right)\right)=f\left(g\left(x_{0}\right)\right)
\]