チェビシェフの不等式
チェビシェフの不等式
任意の正の数\(\epsilon\)に対し、
\[ P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}} \] が成り立つ。
任意の正の数\(\epsilon\)に対し、
\[ P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}} \] が成り立つ。
(0)
マルコフの不等式\[ P\left(\left|X\right|\geq\epsilon\right)\leq\frac{E\left(\left|X\right|\right)}{\epsilon} \] で\(\epsilon\rightarrow\epsilon^{2}\quad,\quad X\rightarrow\left(X-\mu\right)^{2}\)とすると、
\begin{align*} P\left(\left(X-\mu\right)^{2}\geq\epsilon^{2}\right) & =P\left(\left|X-\mu\right|\geq\epsilon\right)\\ & \leq\frac{E\left(\left(X-\mu\right)^{2}\right)}{\epsilon^{2}}\\ & =\frac{V(X)}{\epsilon^{2}} \end{align*} これより、
\[ P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}} \]
(0)-2
\begin{align*} V(X) & =\int_{-\infty}^{\infty}(x-\mu)^{2}P(x)dx\\ & =\int_{-\infty}^{\mu-\epsilon}(x-\mu)^{2}P(x)dx+\int_{\mu-\epsilon}^{\mu+\epsilon}(x-\mu)^{2}P(x)dx+\int_{\mu+\epsilon}^{\infty}(x-\mu)^{2}P(x)dx\qquad,\qquad\forall\epsilon>0\\ & \geq\int_{-\infty}^{\mu-\epsilon}(x-\mu)^{2}P(x)dx+\int_{\mu+\epsilon}^{\infty}(x-\mu)^{2}P(x)dx\\ & \geq\int_{u-\epsilon\geq x}\epsilon^{2}P(x)dx+\int_{\mu+\epsilon\leq x}\epsilon^{2}P(x)dx\\ & =\epsilon^{2}\int_{-x+\mu\geq\epsilon}P(x)dx+\epsilon^{2}\int_{x-\mu\geq\epsilon}P(x)dx\\ & =\epsilon^{2}\int_{\left|x-\mu\right|\geq\epsilon}P(x)dx\\ & =\epsilon^{2}P(\left|X-\mu\right|\geq\epsilon) \end{align*} これより、\[ P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}} \]
ページ情報
タイトル | チェビシェフの不等式 |
URL | https://www.nomuramath.com/p1eiy78p/ |
SNSボタン |
大数の法則
\[
\lim_{n\rightarrow\infty}P(\left|Y_{n}-\mu\right|\geq\epsilon)=0
\]
期待値・分散・共分散などの定義
\[
E(X)=\int_{-\infty}^{\infty}xP(x)dx
\]
期待値の基本的性質
\[
E(XY)=E(X)E(Y)+Cov(X,Y)
\]
相加平均・相乗平均・調和平均・一般化平均の定義
\[
\mu_{A}=\frac{1}{n}\sum_{k=1}^{n}x_{k}
\]