2重根号
\(0\leq a\pm|b|\sqrt{c}\)のとき、
\[ \sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \]
\[ \sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \]
\(a^{2}-b^{2}c\)が平方数のとき2重根号が外せる
\[
\alpha_{\pm}=\sqrt{a\pm|b|\sqrt{c}}
\]
とおくと、
\begin{align*} \alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2} & =a\pm|b|\sqrt{c}+a\mp|b|\sqrt{c}\\ & =2a \end{align*} \begin{align*} \alpha_{\pm}\alpha_{\mp} & =\sqrt{\left(a\pm|b|\sqrt{c}\right)\left(a\mp|b|\sqrt{c}\right)}\\ & =\sqrt{a^{2}-b^{2}c} \end{align*} より、
\begin{align*} \alpha_{\pm} & =\frac{\left(\alpha_{\pm}+\alpha_{\mp}\right)+\left(\alpha_{\pm}-\alpha_{\mp}\right)}{2}\\ & =\frac{\left|\alpha_{\pm}+\alpha_{\mp}\right|\pm\left|\alpha_{\pm}-\alpha_{\mp}\right|}{2}\\ & =\frac{\sqrt{\left(\alpha_{\pm}+\alpha_{\mp}\right)^{2}}\pm\sqrt{\left(\alpha_{\pm}-\alpha_{\mp}\right)^{2}}}{2}\\ & =\frac{\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}+2\alpha_{\pm}\alpha_{\mp}}\pm\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}-2\alpha_{\pm}\alpha_{\mp}}}{2}\\ & =\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \end{align*}
\begin{align*} \alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2} & =a\pm|b|\sqrt{c}+a\mp|b|\sqrt{c}\\ & =2a \end{align*} \begin{align*} \alpha_{\pm}\alpha_{\mp} & =\sqrt{\left(a\pm|b|\sqrt{c}\right)\left(a\mp|b|\sqrt{c}\right)}\\ & =\sqrt{a^{2}-b^{2}c} \end{align*} より、
\begin{align*} \alpha_{\pm} & =\frac{\left(\alpha_{\pm}+\alpha_{\mp}\right)+\left(\alpha_{\pm}-\alpha_{\mp}\right)}{2}\\ & =\frac{\left|\alpha_{\pm}+\alpha_{\mp}\right|\pm\left|\alpha_{\pm}-\alpha_{\mp}\right|}{2}\\ & =\frac{\sqrt{\left(\alpha_{\pm}+\alpha_{\mp}\right)^{2}}\pm\sqrt{\left(\alpha_{\pm}-\alpha_{\mp}\right)^{2}}}{2}\\ & =\frac{\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}+2\alpha_{\pm}\alpha_{\mp}}\pm\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}-2\alpha_{\pm}\alpha_{\mp}}}{2}\\ & =\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \end{align*}
ページ情報
| タイトル | 2重根号 |
| URL | https://www.nomuramath.com/dv97ov6g/ |
| SNSボタン |
ベッセル関数のポアソン積分表示
\[
J_{\nu}(z)=\frac{1}{\sqrt{\pi}\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{z}{2}\right)^{\nu}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{izt}dt
\]
C1級・全微分可能・偏微分可能・連続の関係
\[
C^{1}\text{級}\Rightarrow\text{全微分可能}\Rightarrow\text{偏微分可能}
\]
関数の極限の定義
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]
合成関数の導関数・偏導関数
\[
\frac{df}{dt}=\sum_{k=1}^{n}\frac{\partial f}{\partial x_{k}}\frac{dx_{k}}{dt}
\]

