(*)log(1-x)のn乗の展開
\(n\in\mathbb{N}_{0}\)とする。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
略
ページ情報
タイトル | (*)log(1-x)のn乗の展開 |
URL | https://www.nomuramath.com/bfzjrvry/ |
SNSボタン |
中央2項係数の総和
\[
\sum_{k=0}^{\infty}C^{-1}\left(2k,k\right)=\frac{4}{3}+\frac{2\sqrt{3}\pi}{27}
\]
円周率
円周率πの定義と積分での表示。
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
ライプニッツ級数