ピタゴラスの基本三角関数公式
ピタゴラスの基本三角関数公式
(1)
\[ \cos^{2}x+\sin^{2}x=1 \](2)
\[ 1+\tan^{2}x=\cos^{-2}x \](3)
\[ 1+\cot^{2}x=\sin^{-2}x \](1)
\begin{align*} \cos^{2}x+\sin^{2}x & =\left(\cos x+i\sin x\right)\left(\cos x-i\sin x\right)\\ & =e^{ix}e^{-ix}\\ & =1 \end{align*}(2)
\begin{align*} 1+\tan^{2}x & =\cos^{-2}x(\cos^{2}x+\sin^{2}x)\\ & =\cos^{-2}x \end{align*}(3)
\begin{align*} 1+\cot^{2}x & =\sin^{-2}x(\sin^{2}x+\cos^{2}x)\\ & =\sin^{-2}x \end{align*}基本双曲線関数公式
(1)
\[ \cosh^{2}x-\sinh^{2}x=1 \](2)
\begin{align*} 1-\tanh^{2}x & =\cosh^{-2}x \end{align*}(3)
\[ 1-\coth^{2}x=-\sinh^{-2}x \](1)
\begin{align*} 1 & =\cos^{2}ix+\sin^{2}ix\\ & =\cosh^{2}x-\sinh^{2}ix \end{align*}(2)
\begin{align*} 1-\tanh^{2}x & =\cosh^{-2}x(\cosh^{2}x-\sinh^{2}x)\\ & =\cosh^{-2}x \end{align*}(3)
\begin{align*} 1-\coth^{2}x & =\sinh^{-2}x(\sinh^{2}x-\cosh^{2}x)\\ & =-\sinh^{-2}x \end{align*}ページ情報
タイトル | ピタゴラスの基本三角関数公式 |
URL | https://www.nomuramath.com/xxyoe40l/ |
SNSボタン |
巾関数と逆三角関数・逆双曲線関数の積の積分
\[
\int z^{\alpha}\Sin^{\bullet}zdz=\frac{1}{\alpha+1}\left(z^{\alpha+1}\Sin^{\bullet}z-\frac{z^{\alpha+2}}{\alpha+2}F\left(\frac{1}{2},\frac{\alpha}{2}+1;\frac{\alpha}{2}+2;z^{2}\right)\right)+C
\]
三角関数と双曲線関数の積分
\[
\int\cos xdx=\sin x
\]
三角関数の積
\[
\prod_{k=1}^{n-1}\sin\frac{k\pi}{n}=\frac{n}{2^{n-1}}
\]
x tan(x)とx tanh(x)の積分
\[
\int z\tan^{\pm1}\left(z\right)dz=i^{\pm1}\left\{ \frac{1}{2}z^{2}-iz\Li_{1}\left(\mp e^{2iz}\right)+\frac{1}{2}\Li_{2}\left(\mp e^{2iz}\right)\right\} +C
\]