ピタゴラスの基本三角関数公式
ピタゴラスの基本三角関数公式
(1)
\[ \cos^{2}x+\sin^{2}x=1 \](2)
\[ 1+\tan^{2}x=\cos^{-2}x \](3)
\[ 1+\cot^{2}x=\sin^{-2}x \](1)
\begin{align*} \cos^{2}x+\sin^{2}x & =\left(\cos x+i\sin x\right)\left(\cos x-i\sin x\right)\\ & =e^{ix}e^{-ix}\\ & =1 \end{align*}(2)
\begin{align*} 1+\tan^{2}x & =\cos^{-2}x(\cos^{2}x+\sin^{2}x)\\ & =\cos^{-2}x \end{align*}(3)
\begin{align*} 1+\cot^{2}x & =\sin^{-2}x(\sin^{2}x+\cos^{2}x)\\ & =\sin^{-2}x \end{align*}基本双曲線関数公式
(1)
\[ \cosh^{2}x-\sinh^{2}x=1 \](2)
\begin{align*} 1-\tanh^{2}x & =\cosh^{-2}x \end{align*}(3)
\[ 1-\coth^{2}x=-\sinh^{-2}x \](1)
\begin{align*} 1 & =\cos^{2}ix+\sin^{2}ix\\ & =\cosh^{2}x-\sinh^{2}ix \end{align*}(2)
\begin{align*} 1-\tanh^{2}x & =\cosh^{-2}x(\cosh^{2}x-\sinh^{2}x)\\ & =\cosh^{-2}x \end{align*}(3)
\begin{align*} 1-\coth^{2}x & =\sinh^{-2}x(\sinh^{2}x-\cosh^{2}x)\\ & =-\sinh^{-2}x \end{align*}ページ情報
タイトル | ピタゴラスの基本三角関数公式 |
URL | https://www.nomuramath.com/xxyoe40l/ |
SNSボタン |
3角関数3つでの積和公式・和積公式
\[
\sin A+\sin B+\sin C=4\sin\frac{B+C}{2}\sin\frac{C+A}{2}\sin\frac{A+B}{2}+\sin\left(A+B+C\right)
\]
逆三角関数の負角、余角、逆数
\[
\cos^{\bullet}x+\sin^{\bullet}x=\frac{\pi}{2}
\]
逆3角関数と逆双曲線関数の主値と2乗のルート
\[
\sin^{\bullet}\sin z=z\Rightarrow\sqrt{\cos^{2}z}=\cos z
\]
3角関数のべき乗の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)dx=\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]