ライプニッツ級数
\[
\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4}
\]
が成り立つ。
\(|x|<1\)を考えると、
\begin{align*} \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1} & =\int_{0}^{x}\sum_{n=0}^{\infty}(-1)^{n}x^{2n}dx\\ & =\int_{0}^{x}\frac{1}{1+x^{2}}dx\\ & =[\arctan x]_{0}^{x}\\ & =\arctan x \end{align*} \(x=1\)のとき、交項級数のライプニッツ定理とアーベルの連続性定理より、
\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4} \] が成り立つ。
\begin{align*} \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1} & =\int_{0}^{x}\sum_{n=0}^{\infty}(-1)^{n}x^{2n}dx\\ & =\int_{0}^{x}\frac{1}{1+x^{2}}dx\\ & =[\arctan x]_{0}^{x}\\ & =\arctan x \end{align*} \(x=1\)のとき、交項級数のライプニッツ定理とアーベルの連続性定理より、
\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4} \] が成り立つ。
ページ情報
タイトル | ライプニッツ級数 |
URL | https://www.nomuramath.com/s04t0d5m/ |
SNSボタン |
数列の極限
連続関数の和・積・商
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]
ラクランジュの未定乗数法
\[
F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right)
\]