ライプニッツ級数
\[
\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4}
\]
が成り立つ。
\(|x|<1\)を考えると、
\begin{align*} \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1} & =\int_{0}^{x}\sum_{n=0}^{\infty}(-1)^{n}x^{2n}dx\\ & =\int_{0}^{x}\frac{1}{1+x^{2}}dx\\ & =[\arctan x]_{0}^{x}\\ & =\arctan x \end{align*} \(x=1\)のとき、交項級数のライプニッツ定理とアーベルの連続性定理より、
\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4} \] が成り立つ。
\begin{align*} \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1} & =\int_{0}^{x}\sum_{n=0}^{\infty}(-1)^{n}x^{2n}dx\\ & =\int_{0}^{x}\frac{1}{1+x^{2}}dx\\ & =[\arctan x]_{0}^{x}\\ & =\arctan x \end{align*} \(x=1\)のとき、交項級数のライプニッツ定理とアーベルの連続性定理より、
\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4} \] が成り立つ。
ページ情報
| タイトル | ライプニッツ級数 |
| URL | https://www.nomuramath.com/s04t0d5m/ |
| SNSボタン |
数列の極限での大小関係
\[
a_{n}<b_{n}\Rightarrow a\leq b
\]
合成関数の導関数・偏導関数
\[
\frac{df}{dt}=\sum_{k=1}^{n}\frac{\partial f}{\partial x_{k}}\frac{dx_{k}}{dt}
\]
偏微分の順序交換(シュワルツの定理)
\[
\frac{\partial^{2}f\left(x,y\right)}{\partial x\partial y}=\frac{\partial^{2}f\left(x,y\right)}{\partial y\partial x}
\]
C1級・全微分可能・偏微分可能・連続の関係
\[
C^{1}\text{級}\Rightarrow\text{全微分可能}\Rightarrow\text{偏微分可能}
\]

