eの冪乗の基本
eの冪乗の基本
(1)
\[ e^{\alpha+\beta}=e^{\alpha}e^{\beta} \](2)
\[ e^{x+iy}=e^{x}\left(\cos y+i\sin y\right) \](1)
\begin{align*} e^{\alpha+\beta} & =\sum_{k=0}^{\infty}\frac{\left(\alpha+\beta\right)^{k}}{k!}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{k}C(k,j)\frac{\alpha^{j}\beta^{k-j}}{k!}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{k}\frac{\alpha^{j}\beta^{k-j}}{j!(k-j)!}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{\infty}\frac{\alpha^{j}\beta^{k}}{j!k!}\\ & =\sum_{j=0}^{\infty}\frac{\alpha^{j}}{j!}\sum_{k=0}^{\infty}\frac{\beta^{k}}{k!}\\ & =e^{\alpha}e^{\beta} \end{align*}(2)
\begin{align*} e^{x+iy} & =e^{x}e^{iy}\cmt{\text{(1)より}}\\ & =e^{x}\left(\cos y+i\sin y\right) \end{align*}ページ情報
| タイトル | eの冪乗の基本 |
| URL | https://www.nomuramath.com/yp1rdsbv/ |
| SNSボタン |
0の極限のべき乗と0の極限乗
\[
\lim_{z\rightarrow0}z^{\alpha}=\begin{cases}
0 & 0<\Re\left(\alpha\right)\\
1 & \alpha=0\\
\text{発散} & \Re\left(\alpha\right)<0\lor\left(\Re\left(\alpha\right)=0\land\Im\left(\alpha\right)\ne0\right)
\end{cases}
\]
積が非負実数のべき乗
\[
\left(\Arg\left(\alpha\right)\ne\pi\lor\Arg\left(\beta\right)\ne\pi\right)\land0\leq a\beta\rightarrow\left(\alpha\beta\right)^{\gamma}=\alpha^{\gamma}\beta^{\gamma}
\]
指数関数の実部と虚部
\[
\left|\alpha^{\beta}\right|=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\Arg\left(\alpha\right)}
\]
対数の指数exp(Log(z))と指数の対数Log(exp(z))の違い
\[
\Re\left(z\right)+i\mod\left(\Im\left(z\right),-2\pi,\pi\right)=\Log\left(\exp\left(z\right)\right)
\]

