ピタゴラスの基本三角関数公式
ピタゴラスの基本三角関数公式
(1)
\[ \cos^{2}x+\sin^{2}x=1 \](2)
\[ 1+\tan^{2}x=\cos^{-2}x \](3)
\[ 1+\cot^{2}x=\sin^{-2}x \](1)
\begin{align*} \cos^{2}x+\sin^{2}x & =\left(\cos x+i\sin x\right)\left(\cos x-i\sin x\right)\\ & =e^{ix}e^{-ix}\\ & =1 \end{align*}(2)
\begin{align*} 1+\tan^{2}x & =\cos^{-2}x(\cos^{2}x+\sin^{2}x)\\ & =\cos^{-2}x \end{align*}(3)
\begin{align*} 1+\cot^{2}x & =\sin^{-2}x(\sin^{2}x+\cos^{2}x)\\ & =\sin^{-2}x \end{align*}基本双曲線関数公式
(1)
\[ \cosh^{2}x-\sinh^{2}x=1 \](2)
\begin{align*} 1-\tanh^{2}x & =\cosh^{-2}x \end{align*}(3)
\[ 1-\coth^{2}x=-\sinh^{-2}x \](1)
\begin{align*} 1 & =\cos^{2}ix+\sin^{2}ix\\ & =\cosh^{2}x-\sinh^{2}ix \end{align*}(2)
\begin{align*} 1-\tanh^{2}x & =\cosh^{-2}x(\cosh^{2}x-\sinh^{2}x)\\ & =\cosh^{-2}x \end{align*}(3)
\begin{align*} 1-\coth^{2}x & =\sinh^{-2}x(\sinh^{2}x-\cosh^{2}x)\\ & =-\sinh^{-2}x \end{align*}ページ情報
タイトル | ピタゴラスの基本三角関数公式 |
URL | https://www.nomuramath.com/xxyoe40l/ |
SNSボタン |
逆三角関数と逆双曲線関数の負角
\[
\Sin^{\bullet}\left(-z\right)=-\Sin^{\bullet}z
\]
3角関数・双曲線関数の総和
\[
\sum_{k=m_{1}}^{m_{2}}\sin\left(ak+b\right)=\sin^{-1}\left(\frac{a}{2}\right)\sin\left(\left(m_{1}+m_{2}\right)\frac{a}{2}+b\right)\sin\left(\left(1+m_{2}-m_{1}\right)\frac{a}{2}\right)
\]
三角関数(双曲線関数)の対数とリーマン・ゼータ関数
\[
\log\left(\sin\left(\pi x\right)\right)=\log\left(\pi x\right)-\sum_{k=1}^{\infty}\frac{\zeta\left(2k\right)}{k}x^{2k}
\]
逆正接関数・逆双曲線正接関数と多重対数関数の関係
\[
\Tan^{\bullet}z=\frac{i}{2}\left(-\Li_{1}\left(iz\right)+\Li_{1}\left(-iz\right)\right)
\]