連続と開基との関係
連続と開基との関係
位相空間\(\left(X,\mathcal{O}_{X}\right)\)から位相空間\(\left(Y,\mathcal{O}_{Y}\right)\)への写像\(f:X\rightarrow Y\)があるとき、\(f\)が連続であることと、\(Y\)の開基\(\mathcal{B}_{Y}\)の任意の元\(B_{Y}\)に対し\(f^{\bullet}\left(B_{Y}\right)\in\mathcal{O}_{X}\)となることは同値である。
位相空間\(\left(X,\mathcal{O}_{X}\right)\)から位相空間\(\left(Y,\mathcal{O}_{Y}\right)\)への写像\(f:X\rightarrow Y\)があるとき、\(f\)が連続であることと、\(Y\)の開基\(\mathcal{B}_{Y}\)の任意の元\(B_{Y}\)に対し\(f^{\bullet}\left(B_{Y}\right)\in\mathcal{O}_{X}\)となることは同値である。
\(\Rightarrow\)
\(B_{Y}\in\mathcal{B}_{Y}\subseteq\mathcal{O}_{Y}\)なので、任意の\(B_{Y}\in\mathcal{B}_{Y}\)に対し、ある\(O_{Y}\in\mathcal{O}_{Y}\)が存在し、\(O_{Y}=B_{Y}\)となるので、\(f\)が連続であるという条件より\(f^{\bullet}\left(B_{Y}\right)=f^{\bullet}\left(O_{Y}\right)\in\mathcal{O}_{X}\)となる。故に\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)
条件より、\(\mathcal{B}_{Y}=\left\{ B_{Y,\lambda};\lambda\in\Lambda\right\} \)とすると、任意の\(B_{Y,\lambda}\in\mathcal{B}_{Y}\)に対し、ある\(O_{X,\lambda}\in\mathcal{O}_{X}\)が存在し\(f^{\bullet}\left(B_{Y,\lambda}\right)=O_{X,\lambda}\)となる。\(\mathcal{B}_{Y}\)は開基なので、任意の\(\mathcal{O}_{Y}\)の元\(O_{Y}\in\mathcal{O}_{Y}\)に対し、ある集合\(\Lambda'\)が存在し、\(O_{Y}=\bigcup\left\{ B_{Y,\lambda};\lambda\in\Lambda'\right\} =\bigcup_{\lambda\in\Lambda'}B_{Y,\lambda}\)となる。
これより、\(f^{\bullet}\left(O_{Y}\right)=f^{\bullet}\left(\bigcup_{\lambda\in\Lambda'}B_{Y,\lambda}\right)=\bigcup_{\lambda\in\Lambda'}f^{\bullet}\left(B_{Y,\lambda}\right)=\bigcup_{\lambda\in\Lambda'}O_{X,\lambda}\in\mathcal{O}_{X}\)となるので、\(f\)は連続となる。
故に\(\Leftarrow\)が成り立つ。
\(\Leftrightarrow\)
これらより、\(\Rightarrow\)と\(\Leftarrow\)が成り立つので\(\Leftrightarrow\)が成り立つ。ページ情報
| タイトル | 連続と開基との関係 |
| URL | https://www.nomuramath.com/xgtv233w/ |
| SNSボタン |
行列の対角化可能性
\[
\text{対角化可能}\Leftrightarrow\sum_{k=1}^{r}\dim\left(W\left(\lambda_{k}\right)\right)=n
\]
固有空間の次元と幾何学的重複度
\[
\dim W\left(\lambda_{0}\right)=n-\rank\left(\lambda_{0}I-A\right)
\]
線形包の定義
\[
\left\langle S\right\rangle =\left\{ \sum_{i=1}^{r}c_{i}\boldsymbol{v}_{i};r<\infty,\left\{ \boldsymbol{v}_{i}\right\} _{i\in\left\{ 1,2,\cdots,r\right\} }\subseteq S,\left\{ c_{i}\right\} _{i\in\left\{ 1,2,\cdots,r\right\} }\subseteq K\right\}
\]
固有方程式・固有値・固有ベクトルと固有空間
\[
W\left(\lambda\right)=\ker\left(A-\lambda I\right)
\]

