巾関数の積分表現
巾関数の積分表現
\[ \frac{1}{z^{\alpha}}=\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt \]
\[ \frac{1}{z^{\alpha}}=\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt \]
-
\(\Gamma\left(z\right)\)はガンマ関数\begin{align*}
\frac{1}{z^{\alpha}} & =\frac{1}{\Gamma\left(\alpha\right)}\frac{\Gamma\left(\alpha\right)}{z^{\alpha}}\\
& =\frac{1}{\Gamma\left(\alpha\right)}\mathcal{L}_{t}\left[H\left(t\right)t^{\alpha-1}\right]\left(z\right)\\
& =\frac{1}{\Gamma\left(\alpha\right)}\int_{-\infty}^{\infty}H\left(t\right)t^{\alpha-1}e^{-zt}dt\\
& =\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt
\end{align*}
ページ情報
タイトル | 巾関数の積分表現 |
URL | https://www.nomuramath.com/wpw1zrxj/ |
SNSボタン |
畳み込みの定義
\[
\left(f*g\right)\left(x\right)=\int f\left(t\right)g\left(x-t\right)dt
\]
エジプト式分数表示
任意の正の真分数はエジプト式分数で表せる。
母関数の逆演算
\[
a_{n}=\frac{1}{n!}\left[\frac{d^{n}}{dz^{n}}G\left(z\right)\right]_{z=0}
\]
真分数・仮分数・帯分数の定義
\[
\frac{1}{2},\frac{3}{3},\frac{4}{3}
\]