分子が対数で分母が多項式の定積分
分子が対数で分母が多項式の定積分
次の定積分を求めよ。
\(n\in\mathbb{N}\setminus\left\{ 1\right\} \)とする。
\[ \int_{0}^{\infty}\frac{\log x}{x^{n}+1}dx=? \]
次の定積分を求めよ。
\(n\in\mathbb{N}\setminus\left\{ 1\right\} \)とする。
\[ \int_{0}^{\infty}\frac{\log x}{x^{n}+1}dx=? \]
この定積分が収束するための\(n\)の条件は\(1<\Re\left(n\right)\land\left(\Re\left(\left(-1\right)^{\frac{1}{n}}\right)\leq0\lor\left(-1\right)^{\frac{1}{n}}\notin\mathbb{R}\right)\)となります。
\begin{align*}
\int_{0}^{\infty}\frac{\log x}{x^{n}+1}dx & =\left[\frac{d}{dt}\int_{0}^{\infty}\frac{x^{t}}{x^{n}+1}dx\right]_{t=0}\\
& =\frac{1}{n}\left[\frac{d}{dt}\int_{0}^{\infty}\frac{y^{\frac{t}{n}}}{y+1}y^{\frac{1}{n}-1}dy\right]_{t=0}\\
& =\frac{1}{n}\left[\frac{d}{dt}\int_{0}^{\infty}\frac{y^{\frac{1+t}{n}-1}}{y+1}dy\right]_{t=0}\\
& =\frac{1}{n}\left[\frac{d}{dt}B\left(\frac{1+t}{n}-1+1,1-\left(\frac{1+t}{n}-1\right)-1\right)\right]_{t=0}\\
& =\frac{1}{n}\left[\frac{d}{dt}B\left(\frac{1+t}{n},1-\frac{1+t}{n}\right)\right]_{t=0}\\
& =\frac{1}{n}\left[\frac{d}{dt}\frac{\Gamma\left(\frac{1+t}{n}\right)\Gamma\left(1-\frac{1+t}{n}\right)}{\Gamma\left(\frac{1+t}{n}+1-\frac{1+t}{n}\right)}\right]_{t=0}\\
& =\frac{1}{n}\left[\frac{d}{dt}\Gamma\left(\frac{1+t}{n}\right)\Gamma\left(1-\frac{1+t}{n}\right)\right]_{t=0}\\
& =\frac{\pi}{n}\left[\frac{d}{dt}\sin^{-1}\left(\frac{1+t}{n}\pi\right)\right]_{t=0}\\
& =\frac{\pi}{n}\left[-\frac{\pi}{n}\sin^{-2}\left(\frac{1+t}{n}\pi\right)\cos\left(\frac{1+t}{n}\pi\right)\right]_{t=0}\\
& =-\frac{\pi^{2}}{n^{2}}\sin^{-2}\left(\frac{\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)
\end{align*}
ページ情報
タイトル | 分子が対数で分母が多項式の定積分 |
URL | https://www.nomuramath.com/d0rvkli2/ |
SNSボタン |
分母に(1+x²)²を含む積分
\[
\int\frac{1}{\left(1+x^{2}\right)^{2}}dx=\frac{1}{2}\tan^{\bullet}x+\frac{x}{2\left(1+x^{2}\right)}+C
\]
tanの平方根の積分
\[
\int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\]
xのx乗が指数タワーになってる定積分
\[
\int_{0}^{1}\left(x^{x}\right)^{\left(x^{x}\right)^{\left(x^{x}\right)^{\iddots}}}dx=?
\]
イータ関数の導関数がでてきます
\[
\int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx=?
\]