連続で出来る部分分数分解
\(n\in\mathbb{Z}\)のとき以下のように部分分数分解又は展開が出来る。
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[
\frac{1}{x(x+a)^{n}}=\frac{1}{a}\left(\frac{1}{x(x+a)^{n-1}}-\frac{1}{(x+a)^{n}}\right)
\]
これより、
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
ページ情報
タイトル | 連続で出来る部分分数分解 |
URL | https://www.nomuramath.com/w1ww4359/ |
SNSボタン |
対数と偏角の性質
\[
\log\alpha^{\beta}=\beta\log\alpha+\log1
\]
階乗と階乗の逆数の母関数
\[
\frac{x^{a}}{a!}=e^{x}\left(\frac{\Gamma\left(a+1,x\right)}{\Gamma\left(a+1\right)}-\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)}\right)
\]
上限位相・下限位相は通常位相より強い
\[
\mathcal{O}\subseteq\mathcal{O}_{u}
\]
表と裏のコインの枚数を揃える
目隠しされていて表と裏のコインの枚数を揃えるにはどうすればいいでしょうか?