逆数の偏角と対数
逆数の偏角と対数
(1)
\[ \Arg z^{-1}=-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)} \](2)
\[ \Log z^{-1}=-\Log z+2\pi i\delta_{\pi,\Arg\left(z\right)} \]-
\(\delta_{ij}\)はクロネッカーのデルタ(1)
\begin{align*} \Arg z^{-1} & =\Arg\left(\left|z\right|e^{i\Arg z}\right)^{-1}\\ & =\Arg e^{-i\Arg z}\\ & =\mod\left(-\Arg z,-2\pi,\pi\right)\\ & =-\mod\left(\Arg z+2\pi,-2\pi,\pi\right)-2\pi\left|\sgn\left\{ \mod\left(\Arg z+2\pi,-2\pi,\pi\right)-\pi\right\} \right|+2\pi\\ & =-\Arg z-2\pi\left|\sgn\left(\Arg z-\pi\right)\right|+2\pi\\ & =-\Arg z+2\pi\left(1-\left|\sgn\left(\Arg z-\pi\right)\right|\right)\\ & =-\Arg z+2\pi\delta_{\pi,\Arg z} \end{align*}(1)-2
\begin{align*} \Arg z^{-1} & =\Arg\left(\left|z\right|e^{i\Arg z}\right)^{-1}\\ & =\Arg e^{-i\Arg z}\\ & =-\Arg e^{i\Arg z}+2\pi\delta_{\pi,\Arg\left(z\right)}\\ & =-\Arg\left(\left|z\right|e^{i\Arg z}\right)+2\pi\delta_{\pi,\Arg\left(z\right)}\\ & =-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)} \end{align*}(2)
\begin{align*} \Log z^{-1} & =\ln\left|z^{-1}\right|+i\Arg\left(z^{-1}\right)\\ & =-\ln\left|z\right|+i\Arg\left(z^{-1}\right)\\ & =-\ln\left|z\right|+i\left(-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)}\right)\\ & =-\left(\ln\left|z\right|+i\Arg z\right)+2\pi i\delta_{\pi,\Arg\left(z\right)}\\ & =-\Log z+2\pi i\delta_{\pi,\Arg\left(z\right)} \end{align*}ページ情報
タイトル | 逆数の偏角と対数 |
URL | https://www.nomuramath.com/u4tmxvjg/ |
SNSボタン |
複素数の実部と虚部
\[
\Re\left(-z\right)=-\Re\left(z\right)
\]
複素数の冪関数の定義
\[
\alpha^{\beta}=e^{\beta\log\alpha}
\]
複素共役の偏角と対数
\[
\Arg\overline{z}=-\Arg z+2\pi\delta_{\pi,\Arg z}
\]
積が非負実数のべき乗
\[
\left(\Arg\left(\alpha\right)\ne\pi\lor\Arg\left(\beta\right)\ne\pi\right)\land0\leq a\beta\rightarrow\left(\alpha\beta\right)^{\gamma}=\alpha^{\gamma}\beta^{\gamma}
\]