ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
(1)ガンマ関数
\[ \Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt\qquad\Re(z)>0 \](2)ディガンマ関数
\[ \psi(z)=\frac{d}{dz}\log\Gamma(z) \](3)ポリガンマ関数
\[ \psi^{(n)}(z)=\frac{d^{n}}{dz^{n}}\psi(z)=\frac{d^{n+1}}{dz^{n+1}}\log\Gamma(z) \]ページ情報
タイトル | ガンマ関数・ディガンマ関数・ポリガンマ関数の定義 |
URL | https://www.nomuramath.com/u3m5jiu0/ |
SNSボタン |
ガンマ関数のルジャンドル倍数公式
\[
\Gamma(2z)=\frac{2^{2z-1}}{\sqrt{\pi}}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right)
\]
ガンマ関数の1/2値
\[
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\]
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]